Limits...
The basal ganglia select the expected sensory input used for predictive coding.

Colder B - Front Comput Neurosci (2015)

Bottom Line: A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition.Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan.Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action.

View Article: PubMed Central - PubMed

Affiliation: Colder Scientific McLean, VA, USA.

ABSTRACT
While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

No MeSH data available.


Related in: MedlinePlus

The increased activity in the neural networks instantiating the blue emulation allows those neural networks to recruit neurons in lower-level sensory and motor areas. The spreading of the emulation sends the action plan to the motor strip, which initiates the emulation’s potential action. The spread of the emulation to primary sensory cortices is the top-down propagation of the sensory expectations in the emulation, as described in predictive coding theory.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585144&req=5

Figure 4: The increased activity in the neural networks instantiating the blue emulation allows those neural networks to recruit neurons in lower-level sensory and motor areas. The spreading of the emulation sends the action plan to the motor strip, which initiates the emulation’s potential action. The spread of the emulation to primary sensory cortices is the top-down propagation of the sensory expectations in the emulation, as described in predictive coding theory.

Mentions: But since potential actions and expected sensations are linked, a decrease in inhibition for an emulation also increases the activation of the emulation’s posterior cortical network, allowing the network to recruit neurons that are physically closer to primary sensory cortices. This recruitment is the top-down dissemination of the emulation’s sensory expectations on lower-level sensory areas, and it is the implementation of predictive coding. BG disinhibition of preferred emulations and their distributed cortical networks is thus proposed to allow the spread of top-down expectations that shape ongoing perception. Figure 4 shows that since excitatory input from thalamus has increased for the blue emulation, the active neural networks for that emulation have recruited more neurons. Activity for the blue emulation has spread to primary motor cortex, meaning that the emulation’s action is being performed. Neural networks instantiating the blue emulation have also spread to primary somato-sensory cortex and primary visual cortex, indicating that the emulation’s sensory expectations are being used to interpret incoming sensation.


The basal ganglia select the expected sensory input used for predictive coding.

Colder B - Front Comput Neurosci (2015)

The increased activity in the neural networks instantiating the blue emulation allows those neural networks to recruit neurons in lower-level sensory and motor areas. The spreading of the emulation sends the action plan to the motor strip, which initiates the emulation’s potential action. The spread of the emulation to primary sensory cortices is the top-down propagation of the sensory expectations in the emulation, as described in predictive coding theory.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585144&req=5

Figure 4: The increased activity in the neural networks instantiating the blue emulation allows those neural networks to recruit neurons in lower-level sensory and motor areas. The spreading of the emulation sends the action plan to the motor strip, which initiates the emulation’s potential action. The spread of the emulation to primary sensory cortices is the top-down propagation of the sensory expectations in the emulation, as described in predictive coding theory.
Mentions: But since potential actions and expected sensations are linked, a decrease in inhibition for an emulation also increases the activation of the emulation’s posterior cortical network, allowing the network to recruit neurons that are physically closer to primary sensory cortices. This recruitment is the top-down dissemination of the emulation’s sensory expectations on lower-level sensory areas, and it is the implementation of predictive coding. BG disinhibition of preferred emulations and their distributed cortical networks is thus proposed to allow the spread of top-down expectations that shape ongoing perception. Figure 4 shows that since excitatory input from thalamus has increased for the blue emulation, the active neural networks for that emulation have recruited more neurons. Activity for the blue emulation has spread to primary motor cortex, meaning that the emulation’s action is being performed. Neural networks instantiating the blue emulation have also spread to primary somato-sensory cortex and primary visual cortex, indicating that the emulation’s sensory expectations are being used to interpret incoming sensation.

Bottom Line: A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition.Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan.Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action.

View Article: PubMed Central - PubMed

Affiliation: Colder Scientific McLean, VA, USA.

ABSTRACT
While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

No MeSH data available.


Related in: MedlinePlus