Limits...
The basal ganglia select the expected sensory input used for predictive coding.

Colder B - Front Comput Neurosci (2015)

Bottom Line: A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition.Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan.Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action.

View Article: PubMed Central - PubMed

Affiliation: Colder Scientific McLean, VA, USA.

ABSTRACT
While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

No MeSH data available.


Related in: MedlinePlus

In this figure, basal ganglia GO pathways are shown in blue, and they are selecting the “blue” emulation, while NO GO pathways are shown in yellow deselecting the “yellow” emulation. Arrows that are outlined in black denote an excitatory connection, while red-outlined arrows represent an inhibitory connection. Pathway 1 is a NO GO pathway that includes an inhibitory connection from the striatum to the globus pallidus externus (GPe), an inhibitory connection from the GPe to the globus pallidus internus (GPi), and an inhibitory connection to the thalamus. Pathway 2 is a GO pathway that has an inhibitory connection from the striatum to the GPi, and an inhibitory connection from the GPi to the thalamus. Pathway 3 is a NO GO pathway that contains an inhibitory connection from the striatum to the GPe, an inhibitory connection from the GPe to the subthalamic nucleus (STn), an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Pathway 4 is a GO pathway that has an inhibitory connection from the striatum to the substantia nigra pars reticulata (SNr), and an inhibitory connection from SNr to thalamus. Instead of starting in the striatum, Pathway 5 is a NO GO pathway that includes an excitatory connection directly from cortex the STn, an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Note that the pathways shown are just a selected subset of all the possible pathways information can travel through the basal ganglia in a cortical-basal ganglia-thalamo-cortical loop. See Schroll and Hamker (2013) for a review of basal ganglia pathways.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585144&req=5

Figure 3: In this figure, basal ganglia GO pathways are shown in blue, and they are selecting the “blue” emulation, while NO GO pathways are shown in yellow deselecting the “yellow” emulation. Arrows that are outlined in black denote an excitatory connection, while red-outlined arrows represent an inhibitory connection. Pathway 1 is a NO GO pathway that includes an inhibitory connection from the striatum to the globus pallidus externus (GPe), an inhibitory connection from the GPe to the globus pallidus internus (GPi), and an inhibitory connection to the thalamus. Pathway 2 is a GO pathway that has an inhibitory connection from the striatum to the GPi, and an inhibitory connection from the GPi to the thalamus. Pathway 3 is a NO GO pathway that contains an inhibitory connection from the striatum to the GPe, an inhibitory connection from the GPe to the subthalamic nucleus (STn), an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Pathway 4 is a GO pathway that has an inhibitory connection from the striatum to the substantia nigra pars reticulata (SNr), and an inhibitory connection from SNr to thalamus. Instead of starting in the striatum, Pathway 5 is a NO GO pathway that includes an excitatory connection directly from cortex the STn, an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Note that the pathways shown are just a selected subset of all the possible pathways information can travel through the basal ganglia in a cortical-basal ganglia-thalamo-cortical loop. See Schroll and Hamker (2013) for a review of basal ganglia pathways.

Mentions: Mink (1996) and Hazy et al. (2007) suggested that actions are selected when Go pathway activation for the cortico-BG-thalamo-cortical loop disinhibits the selected PFC action representation, at the same time as NoGo activity increases for competing actions in different information loops. Both Go and NoGo pathways were recently found to be active during normal movement (Cui et al., 2013), supporting the concept that action selection results from changes in the activation of each pathway relative to the other. Figure 3 shows some of the pathways information travels through the BG in cortical-BG-thalamo-cortical loops. Information about the blue emulation is moving on GO pathways, while the yellow emulation is being deselected by NO GO pathways.


The basal ganglia select the expected sensory input used for predictive coding.

Colder B - Front Comput Neurosci (2015)

In this figure, basal ganglia GO pathways are shown in blue, and they are selecting the “blue” emulation, while NO GO pathways are shown in yellow deselecting the “yellow” emulation. Arrows that are outlined in black denote an excitatory connection, while red-outlined arrows represent an inhibitory connection. Pathway 1 is a NO GO pathway that includes an inhibitory connection from the striatum to the globus pallidus externus (GPe), an inhibitory connection from the GPe to the globus pallidus internus (GPi), and an inhibitory connection to the thalamus. Pathway 2 is a GO pathway that has an inhibitory connection from the striatum to the GPi, and an inhibitory connection from the GPi to the thalamus. Pathway 3 is a NO GO pathway that contains an inhibitory connection from the striatum to the GPe, an inhibitory connection from the GPe to the subthalamic nucleus (STn), an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Pathway 4 is a GO pathway that has an inhibitory connection from the striatum to the substantia nigra pars reticulata (SNr), and an inhibitory connection from SNr to thalamus. Instead of starting in the striatum, Pathway 5 is a NO GO pathway that includes an excitatory connection directly from cortex the STn, an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Note that the pathways shown are just a selected subset of all the possible pathways information can travel through the basal ganglia in a cortical-basal ganglia-thalamo-cortical loop. See Schroll and Hamker (2013) for a review of basal ganglia pathways.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585144&req=5

Figure 3: In this figure, basal ganglia GO pathways are shown in blue, and they are selecting the “blue” emulation, while NO GO pathways are shown in yellow deselecting the “yellow” emulation. Arrows that are outlined in black denote an excitatory connection, while red-outlined arrows represent an inhibitory connection. Pathway 1 is a NO GO pathway that includes an inhibitory connection from the striatum to the globus pallidus externus (GPe), an inhibitory connection from the GPe to the globus pallidus internus (GPi), and an inhibitory connection to the thalamus. Pathway 2 is a GO pathway that has an inhibitory connection from the striatum to the GPi, and an inhibitory connection from the GPi to the thalamus. Pathway 3 is a NO GO pathway that contains an inhibitory connection from the striatum to the GPe, an inhibitory connection from the GPe to the subthalamic nucleus (STn), an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Pathway 4 is a GO pathway that has an inhibitory connection from the striatum to the substantia nigra pars reticulata (SNr), and an inhibitory connection from SNr to thalamus. Instead of starting in the striatum, Pathway 5 is a NO GO pathway that includes an excitatory connection directly from cortex the STn, an excitatory connection from STn to GPi, and an inhibitory connection from GPi to thalamus. Note that the pathways shown are just a selected subset of all the possible pathways information can travel through the basal ganglia in a cortical-basal ganglia-thalamo-cortical loop. See Schroll and Hamker (2013) for a review of basal ganglia pathways.
Mentions: Mink (1996) and Hazy et al. (2007) suggested that actions are selected when Go pathway activation for the cortico-BG-thalamo-cortical loop disinhibits the selected PFC action representation, at the same time as NoGo activity increases for competing actions in different information loops. Both Go and NoGo pathways were recently found to be active during normal movement (Cui et al., 2013), supporting the concept that action selection results from changes in the activation of each pathway relative to the other. Figure 3 shows some of the pathways information travels through the BG in cortical-BG-thalamo-cortical loops. Information about the blue emulation is moving on GO pathways, while the yellow emulation is being deselected by NO GO pathways.

Bottom Line: A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition.Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan.Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action.

View Article: PubMed Central - PubMed

Affiliation: Colder Scientific McLean, VA, USA.

ABSTRACT
While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

No MeSH data available.


Related in: MedlinePlus