Limits...
The basal ganglia select the expected sensory input used for predictive coding.

Colder B - Front Comput Neurosci (2015)

Bottom Line: A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition.Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan.Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action.

View Article: PubMed Central - PubMed

Affiliation: Colder Scientific McLean, VA, USA.

ABSTRACT
While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

No MeSH data available.


Related in: MedlinePlus

The yellow dots represent activity in a neural network instantiating another notional emulation that also has activity in higher-level association areas of the brain. The blue and yellow emulations contain different potential actions and expected outcomes. Multiple emulations are hypothesized to compete for realization at any given time.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585144&req=5

Figure 2: The yellow dots represent activity in a neural network instantiating another notional emulation that also has activity in higher-level association areas of the brain. The blue and yellow emulations contain different potential actions and expected outcomes. Multiple emulations are hypothesized to compete for realization at any given time.

Mentions: Tract-tracing studies indicate that information flows from cortex through the basal ganglia and thalamus and back to cortex in mainly segregated loops (Alexander et al., 1986; Middleton and Strick, 2002) although there is some integration of information between loops (Haber and Calzavara, 2009). Although most empirical evidence demonstrates information loops between BG and PFC, retrograde labeling of the substantia nigra pars reticulata (SNr) reveals projections through thalamus to the inferotemporal cortex as well (Middleton and Strick, 1996), suggesting the existence of closed information loops from all parts of cortex through the BG and back to cortex. Figure 2 depicts the cortical-basal ganglia-thalamo-cortical loops for inferotemporal cortex for notional blue and yellow emulations.


The basal ganglia select the expected sensory input used for predictive coding.

Colder B - Front Comput Neurosci (2015)

The yellow dots represent activity in a neural network instantiating another notional emulation that also has activity in higher-level association areas of the brain. The blue and yellow emulations contain different potential actions and expected outcomes. Multiple emulations are hypothesized to compete for realization at any given time.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585144&req=5

Figure 2: The yellow dots represent activity in a neural network instantiating another notional emulation that also has activity in higher-level association areas of the brain. The blue and yellow emulations contain different potential actions and expected outcomes. Multiple emulations are hypothesized to compete for realization at any given time.
Mentions: Tract-tracing studies indicate that information flows from cortex through the basal ganglia and thalamus and back to cortex in mainly segregated loops (Alexander et al., 1986; Middleton and Strick, 2002) although there is some integration of information between loops (Haber and Calzavara, 2009). Although most empirical evidence demonstrates information loops between BG and PFC, retrograde labeling of the substantia nigra pars reticulata (SNr) reveals projections through thalamus to the inferotemporal cortex as well (Middleton and Strick, 1996), suggesting the existence of closed information loops from all parts of cortex through the BG and back to cortex. Figure 2 depicts the cortical-basal ganglia-thalamo-cortical loops for inferotemporal cortex for notional blue and yellow emulations.

Bottom Line: A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition.Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan.Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action.

View Article: PubMed Central - PubMed

Affiliation: Colder Scientific McLean, VA, USA.

ABSTRACT
While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

No MeSH data available.


Related in: MedlinePlus