Limits...
A novel workflow correlating RNA-seq data to Phythophthora infestans resistance levels in wild Solanum species and potato clones.

Frades I, Abreha KB, Proux-Wéra E, Lankinen Å, Andreasson E, Alexandersson E - Front Plant Sci (2015)

Bottom Line: More transcript families were expanded in the resistant clones and species and the enriched functions of these were associated to expected gene ontology (GO) terms for resistance mechanisms such as hypersensitive response, host programmed cell death and endopeptidase activity.However, no differences in numbers of susceptibility (S-)gene homologs were seen between species and clones.In addition, we identified P. infestans transcripts including effectors in the early stages of P. infestans-Solanum interactions.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, Sweden.

ABSTRACT
Comparative transcriptomics between species can provide valuable understanding of plant-pathogen interactions. Here, we focus on wild Solanum species and potato clones with varying degree of resistance against Phytophthora infestans, which causes the devastating late blight disease in potato. The transcriptomes of three wild Solanum species native to Southern Sweden, Solanum dulcamara, Solanum nigrum, and Solanum physalifolium were compared to three potato clones, Desiree (cv.), SW93-1015 and Sarpo Mira. Desiree and S. physalifolium are susceptible to P. infestans whereas the other four have different degrees of resistance. By building transcript families based on de novo assembled RNA-seq across species and clones and correlating these to resistance phenotypes, we created a novel workflow to identify families with expanded or depleted number of transcripts in relation to the P. infestans resistance level. Analysis was facilitated by inferring functional annotations based on the family structure and semantic clustering. More transcript families were expanded in the resistant clones and species and the enriched functions of these were associated to expected gene ontology (GO) terms for resistance mechanisms such as hypersensitive response, host programmed cell death and endopeptidase activity. However, a number of unexpected functions and transcripts were also identified, for example transmembrane transport and protein acylation expanded in the susceptible group and a cluster of Zinc knuckle family proteins expanded in the resistant group. Over 400 expressed putative resistance (R-)genes were identified and resistant clones Sarpo Mira and SW93-1015 had ca 25% more expressed putative R-genes than susceptible cultivar Desiree. However, no differences in numbers of susceptibility (S-)gene homologs were seen between species and clones. In addition, we identified P. infestans transcripts including effectors in the early stages of P. infestans-Solanum interactions.

No MeSH data available.


Related in: MedlinePlus

OrthoMCL cluster overlap between Solanum nigrum (yellow), S. dulcamara (red), and S. physalifolium (lilac), Desiree (blue), Sarpo Mira (green), SW93-1015 (orange) based on detected transcripts.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585127&req=5

Figure 5: OrthoMCL cluster overlap between Solanum nigrum (yellow), S. dulcamara (red), and S. physalifolium (lilac), Desiree (blue), Sarpo Mira (green), SW93-1015 (orange) based on detected transcripts.

Mentions: Under detached leaf conditions S. dulcamara had slightly fewer transcripts represented in the OrthoMCL clusters compared to the others, which had representatives in roughly 2/3 of all OrthoMCL clusters (Table 2). With 456 OrthoMCL clusters only containing SW93-1015 transcripts, this clone had the highest number of unique clusters (Table 2; Figure 5). However, since these observed differences in expressed transcripts are from detached leaf assays solely, to which the species/clones might react differently to the incubation condition, results on species and clone-specific features should be seen as preliminary until the transcriptomes from several environments and most importantly from field and natural habitat conditions have been obtained.


A novel workflow correlating RNA-seq data to Phythophthora infestans resistance levels in wild Solanum species and potato clones.

Frades I, Abreha KB, Proux-Wéra E, Lankinen Å, Andreasson E, Alexandersson E - Front Plant Sci (2015)

OrthoMCL cluster overlap between Solanum nigrum (yellow), S. dulcamara (red), and S. physalifolium (lilac), Desiree (blue), Sarpo Mira (green), SW93-1015 (orange) based on detected transcripts.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585127&req=5

Figure 5: OrthoMCL cluster overlap between Solanum nigrum (yellow), S. dulcamara (red), and S. physalifolium (lilac), Desiree (blue), Sarpo Mira (green), SW93-1015 (orange) based on detected transcripts.
Mentions: Under detached leaf conditions S. dulcamara had slightly fewer transcripts represented in the OrthoMCL clusters compared to the others, which had representatives in roughly 2/3 of all OrthoMCL clusters (Table 2). With 456 OrthoMCL clusters only containing SW93-1015 transcripts, this clone had the highest number of unique clusters (Table 2; Figure 5). However, since these observed differences in expressed transcripts are from detached leaf assays solely, to which the species/clones might react differently to the incubation condition, results on species and clone-specific features should be seen as preliminary until the transcriptomes from several environments and most importantly from field and natural habitat conditions have been obtained.

Bottom Line: More transcript families were expanded in the resistant clones and species and the enriched functions of these were associated to expected gene ontology (GO) terms for resistance mechanisms such as hypersensitive response, host programmed cell death and endopeptidase activity.However, no differences in numbers of susceptibility (S-)gene homologs were seen between species and clones.In addition, we identified P. infestans transcripts including effectors in the early stages of P. infestans-Solanum interactions.

View Article: PubMed Central - PubMed

Affiliation: Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, Sweden.

ABSTRACT
Comparative transcriptomics between species can provide valuable understanding of plant-pathogen interactions. Here, we focus on wild Solanum species and potato clones with varying degree of resistance against Phytophthora infestans, which causes the devastating late blight disease in potato. The transcriptomes of three wild Solanum species native to Southern Sweden, Solanum dulcamara, Solanum nigrum, and Solanum physalifolium were compared to three potato clones, Desiree (cv.), SW93-1015 and Sarpo Mira. Desiree and S. physalifolium are susceptible to P. infestans whereas the other four have different degrees of resistance. By building transcript families based on de novo assembled RNA-seq across species and clones and correlating these to resistance phenotypes, we created a novel workflow to identify families with expanded or depleted number of transcripts in relation to the P. infestans resistance level. Analysis was facilitated by inferring functional annotations based on the family structure and semantic clustering. More transcript families were expanded in the resistant clones and species and the enriched functions of these were associated to expected gene ontology (GO) terms for resistance mechanisms such as hypersensitive response, host programmed cell death and endopeptidase activity. However, a number of unexpected functions and transcripts were also identified, for example transmembrane transport and protein acylation expanded in the susceptible group and a cluster of Zinc knuckle family proteins expanded in the resistant group. Over 400 expressed putative resistance (R-)genes were identified and resistant clones Sarpo Mira and SW93-1015 had ca 25% more expressed putative R-genes than susceptible cultivar Desiree. However, no differences in numbers of susceptibility (S-)gene homologs were seen between species and clones. In addition, we identified P. infestans transcripts including effectors in the early stages of P. infestans-Solanum interactions.

No MeSH data available.


Related in: MedlinePlus