Limits...
Multi-modal representation of effector modality in frontal cortex during rule switching.

Hodgson TL, Parris BA, Benattayallah A, Summers IR - Front Hum Neurosci (2015)

Bottom Line: Participants performed a rule switching task using different effector modalities.Multivariate analysis revealed that the pattern of activity evoked by Flip rule Feedbacks within an apparently supra modal frontal region (dorsolateral frontal cortex) discriminated between response epochs.The results are consistent with the existence of multi-modal representations of stimulus-response (SR) rules within the frontal cerebral cortex.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, University of Lincoln Lincoln, UK.

ABSTRACT
We report a functional magnetic resonance imaging (fMRI) study which investigated whether brain areas involved in updating task rules within the frontal lobe of the cerebral cortex show activity related to the modality of motor response used in the task. Participants performed a rule switching task using different effector modalities. In some blocks participants responded with left/right button presses, whilst in other blocks left/right saccades were required. The color of a Cue event instructed a left or right response based upon a rule, followed by a Feedback which indicated whether the rule was to stay the same or "Flip" on the next trial. The findings revealed variation in the locus of activity within the ventrolateral frontal cortex dependent upon effector modality. Other frontal areas showed no significant difference in activity between response epochs but changed their pattern of connectivity with posterior cortical areas dependent upon response. Multivariate analysis revealed that the pattern of activity evoked by Flip rule Feedbacks within an apparently supra modal frontal region (dorsolateral frontal cortex) discriminated between response epochs. The results are consistent with the existence of multi-modal representations of stimulus-response (SR) rules within the frontal cerebral cortex.

No MeSH data available.


Related in: MedlinePlus

(A) Sectional view of activity in dorsolateral frontal cortex ROI during Flip rule feedback events (left panel) used as a seed region in a PPI analysis, alongside rendered view of posterior cortical areas showing enhanced covariance with the seed region in Hand (middle) or Eye (right) response epochs. (B) Examples of confusion matrices and classifier function plots illustrating typical discrimination performance of a voxel pattern analysis classifier discriminating between Flip feedback event related activity in either Eye or Hand response epochs in the same left dorsolateral frontal ROI.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585120&req=5

Figure 4: (A) Sectional view of activity in dorsolateral frontal cortex ROI during Flip rule feedback events (left panel) used as a seed region in a PPI analysis, alongside rendered view of posterior cortical areas showing enhanced covariance with the seed region in Hand (middle) or Eye (right) response epochs. (B) Examples of confusion matrices and classifier function plots illustrating typical discrimination performance of a voxel pattern analysis classifier discriminating between Flip feedback event related activity in either Eye or Hand response epochs in the same left dorsolateral frontal ROI.

Mentions: This analysis revealed a large cluster of voxels in the right posterior parietal cortex which showed enhanced connectivity with the lateral frontal seed region during Hand compared to Eye epochs. For the reverse comparison, a cluster of voxels in the lateral occipital cortex showed significantly enhanced covariance of activity during eye relative to hand epochs (Figure 4A; Table 3C). No significantly activated voxels were apparent from the equivalent analysis using the anterior cingulate gyrus as the seed region.


Multi-modal representation of effector modality in frontal cortex during rule switching.

Hodgson TL, Parris BA, Benattayallah A, Summers IR - Front Hum Neurosci (2015)

(A) Sectional view of activity in dorsolateral frontal cortex ROI during Flip rule feedback events (left panel) used as a seed region in a PPI analysis, alongside rendered view of posterior cortical areas showing enhanced covariance with the seed region in Hand (middle) or Eye (right) response epochs. (B) Examples of confusion matrices and classifier function plots illustrating typical discrimination performance of a voxel pattern analysis classifier discriminating between Flip feedback event related activity in either Eye or Hand response epochs in the same left dorsolateral frontal ROI.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585120&req=5

Figure 4: (A) Sectional view of activity in dorsolateral frontal cortex ROI during Flip rule feedback events (left panel) used as a seed region in a PPI analysis, alongside rendered view of posterior cortical areas showing enhanced covariance with the seed region in Hand (middle) or Eye (right) response epochs. (B) Examples of confusion matrices and classifier function plots illustrating typical discrimination performance of a voxel pattern analysis classifier discriminating between Flip feedback event related activity in either Eye or Hand response epochs in the same left dorsolateral frontal ROI.
Mentions: This analysis revealed a large cluster of voxels in the right posterior parietal cortex which showed enhanced connectivity with the lateral frontal seed region during Hand compared to Eye epochs. For the reverse comparison, a cluster of voxels in the lateral occipital cortex showed significantly enhanced covariance of activity during eye relative to hand epochs (Figure 4A; Table 3C). No significantly activated voxels were apparent from the equivalent analysis using the anterior cingulate gyrus as the seed region.

Bottom Line: Participants performed a rule switching task using different effector modalities.Multivariate analysis revealed that the pattern of activity evoked by Flip rule Feedbacks within an apparently supra modal frontal region (dorsolateral frontal cortex) discriminated between response epochs.The results are consistent with the existence of multi-modal representations of stimulus-response (SR) rules within the frontal cerebral cortex.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, University of Lincoln Lincoln, UK.

ABSTRACT
We report a functional magnetic resonance imaging (fMRI) study which investigated whether brain areas involved in updating task rules within the frontal lobe of the cerebral cortex show activity related to the modality of motor response used in the task. Participants performed a rule switching task using different effector modalities. In some blocks participants responded with left/right button presses, whilst in other blocks left/right saccades were required. The color of a Cue event instructed a left or right response based upon a rule, followed by a Feedback which indicated whether the rule was to stay the same or "Flip" on the next trial. The findings revealed variation in the locus of activity within the ventrolateral frontal cortex dependent upon effector modality. Other frontal areas showed no significant difference in activity between response epochs but changed their pattern of connectivity with posterior cortical areas dependent upon response. Multivariate analysis revealed that the pattern of activity evoked by Flip rule Feedbacks within an apparently supra modal frontal region (dorsolateral frontal cortex) discriminated between response epochs. The results are consistent with the existence of multi-modal representations of stimulus-response (SR) rules within the frontal cerebral cortex.

No MeSH data available.


Related in: MedlinePlus