Limits...
Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum.

Liu Z, Shi L, Liu Y, Tang Q, Shen L, Yang S, Cai J, Yu H, Wang R, Wen J, Lin Y, Hu J, Liu C, Zhang Y, Mou S, He S - Front Plant Sci (2015)

Bottom Line: However, significant divergences were also found.Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper.These results will facilitate future functional characterization of MAPK cascades in pepper.

View Article: PubMed Central - PubMed

Affiliation: National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University Fuzhou, China ; College of Plant Protection, Fujian Agriculture and Forestry University Fuzhou, China.

ABSTRACT
The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper.

No MeSH data available.


Related in: MedlinePlus

Heat maps showing the expression patterns of the MAPKs and MAPKKs in pepper in response to phytohormones. The expression patterns of MAPKs and MAPKKs in response to ABA (100 μM), ETH (100 μM), MeJA (100 μM), and SA (1 mM). The relative expression (the mean fold changed between treated and control samples at each time points ± standard deviations) was log2 transformed. Each value represents the mean relative level of expression of three replicates. Blue represents low expression, red represents high expression. The heat map was generated using the software HemI.1.0.1.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585111&req=5

Figure 10: Heat maps showing the expression patterns of the MAPKs and MAPKKs in pepper in response to phytohormones. The expression patterns of MAPKs and MAPKKs in response to ABA (100 μM), ETH (100 μM), MeJA (100 μM), and SA (1 mM). The relative expression (the mean fold changed between treated and control samples at each time points ± standard deviations) was log2 transformed. Each value represents the mean relative level of expression of three replicates. Blue represents low expression, red represents high expression. The heat map was generated using the software HemI.1.0.1.

Mentions: MAPK modules have been implicated in plant responses to biotic and abiotic stresses, and the presence of stress-responsive cis-elements in the promoters of the MAPK and MAPKK genes suggest their involvement in pepper response to different stresses. To confirm this speculation, the transcriptional expression of the 19 MAPKs and five MAPKKs were analyzed in pepper plants by qPCR after application of salt stress, heat shock, and RS inoculation as well as exogenous application of SA, MeJA, ETH, and ABA (Figures 9, 10 and Figures S2–S8). Almost all of the MAPKK genes exhibited modified transcriptional expression upon these challenges, and were synergistically upregulated or downregulated by two of three stresses. Similarly, the expressions of almost all 19 MAPK genes were modified differently in level and timing by the three stresses and the four exogenously applied hormones, with the majority being upregulated and a few being downregulated. For the RS inoculation, the transcript levels of CaMPK1, CaMPK3, CaMPK4-1, 4-2, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, and 17-1 were upregulated, however, the other MAPK members exhibited downregulated, except for CaMPK9-2 (no significant change). A total of 14 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, 17-1, 17-2, 19-1, and 20-2) were significant upregulated and 4 MAPK genes were downregulated under the heat shock stress. Under the treatment of high salinity, mRNA level of 15 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, 17-1, 17-2, 19-1, 20-1, and 20-2) exhibited significant upregulated and 4 MAPK genes were downregulated. The transcript levels of 11 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, and 20-2) and 13 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, 17-2, 19-2, and 20-2) can be significantly induced in response to exogenous application of SA and MeJA, respectively. Additionally, under the treatments of ET, the transcript levels of 16 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-2, 4-3, 6-1, 6-2, 7, 9-1, 9-2, 13-1, 13-2, 17-2, 16, 19-2, and 20-2) can be significant induced, and the other 3 members showed significant downregulated. Only 2 MAPK genes (CaMPK9-1 and CaMPK17-1) can be significantly induced in exposure to ABA, but the other 17 members exhibited significant downregulated.


Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum.

Liu Z, Shi L, Liu Y, Tang Q, Shen L, Yang S, Cai J, Yu H, Wang R, Wen J, Lin Y, Hu J, Liu C, Zhang Y, Mou S, He S - Front Plant Sci (2015)

Heat maps showing the expression patterns of the MAPKs and MAPKKs in pepper in response to phytohormones. The expression patterns of MAPKs and MAPKKs in response to ABA (100 μM), ETH (100 μM), MeJA (100 μM), and SA (1 mM). The relative expression (the mean fold changed between treated and control samples at each time points ± standard deviations) was log2 transformed. Each value represents the mean relative level of expression of three replicates. Blue represents low expression, red represents high expression. The heat map was generated using the software HemI.1.0.1.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585111&req=5

Figure 10: Heat maps showing the expression patterns of the MAPKs and MAPKKs in pepper in response to phytohormones. The expression patterns of MAPKs and MAPKKs in response to ABA (100 μM), ETH (100 μM), MeJA (100 μM), and SA (1 mM). The relative expression (the mean fold changed between treated and control samples at each time points ± standard deviations) was log2 transformed. Each value represents the mean relative level of expression of three replicates. Blue represents low expression, red represents high expression. The heat map was generated using the software HemI.1.0.1.
Mentions: MAPK modules have been implicated in plant responses to biotic and abiotic stresses, and the presence of stress-responsive cis-elements in the promoters of the MAPK and MAPKK genes suggest their involvement in pepper response to different stresses. To confirm this speculation, the transcriptional expression of the 19 MAPKs and five MAPKKs were analyzed in pepper plants by qPCR after application of salt stress, heat shock, and RS inoculation as well as exogenous application of SA, MeJA, ETH, and ABA (Figures 9, 10 and Figures S2–S8). Almost all of the MAPKK genes exhibited modified transcriptional expression upon these challenges, and were synergistically upregulated or downregulated by two of three stresses. Similarly, the expressions of almost all 19 MAPK genes were modified differently in level and timing by the three stresses and the four exogenously applied hormones, with the majority being upregulated and a few being downregulated. For the RS inoculation, the transcript levels of CaMPK1, CaMPK3, CaMPK4-1, 4-2, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, and 17-1 were upregulated, however, the other MAPK members exhibited downregulated, except for CaMPK9-2 (no significant change). A total of 14 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, 17-1, 17-2, 19-1, and 20-2) were significant upregulated and 4 MAPK genes were downregulated under the heat shock stress. Under the treatment of high salinity, mRNA level of 15 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, 17-1, 17-2, 19-1, 20-1, and 20-2) exhibited significant upregulated and 4 MAPK genes were downregulated. The transcript levels of 11 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, and 20-2) and 13 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-3, 6-1, 6-2, 7, 9-1, 13-1, 13-2, 17-2, 19-2, and 20-2) can be significantly induced in response to exogenous application of SA and MeJA, respectively. Additionally, under the treatments of ET, the transcript levels of 16 MAPK genes (CaMPK1, CaMPK3, CaMPK4-1, 4-2, 4-3, 6-1, 6-2, 7, 9-1, 9-2, 13-1, 13-2, 17-2, 16, 19-2, and 20-2) can be significant induced, and the other 3 members showed significant downregulated. Only 2 MAPK genes (CaMPK9-1 and CaMPK17-1) can be significantly induced in exposure to ABA, but the other 17 members exhibited significant downregulated.

Bottom Line: However, significant divergences were also found.Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper.These results will facilitate future functional characterization of MAPK cascades in pepper.

View Article: PubMed Central - PubMed

Affiliation: National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University Fuzhou, China ; College of Plant Protection, Fujian Agriculture and Forestry University Fuzhou, China.

ABSTRACT
The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper.

No MeSH data available.


Related in: MedlinePlus