Limits...
Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum.

Liu Z, Shi L, Liu Y, Tang Q, Shen L, Yang S, Cai J, Yu H, Wang R, Wen J, Lin Y, Hu J, Liu C, Zhang Y, Mou S, He S - Front Plant Sci (2015)

Bottom Line: However, significant divergences were also found.Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper.These results will facilitate future functional characterization of MAPK cascades in pepper.

View Article: PubMed Central - PubMed

Affiliation: National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University Fuzhou, China ; College of Plant Protection, Fujian Agriculture and Forestry University Fuzhou, China.

ABSTRACT
The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper.

No MeSH data available.


Related in: MedlinePlus

Multiple sequence alignment of the amino acid sequences of pepper MAPKs and MAPKs from other plant species (tomato, Arabidopsis, and rice). The alignment was performed using Clustal X. The 11 conserved domains (I–XI) present in pepper serine/threonine protein kinases are denoted by Roman numerals. The activation loop region is marked by a black line. The conserved threonine and tyrosine residues are indicated by asterisks.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585111&req=5

Figure 1: Multiple sequence alignment of the amino acid sequences of pepper MAPKs and MAPKs from other plant species (tomato, Arabidopsis, and rice). The alignment was performed using Clustal X. The 11 conserved domains (I–XI) present in pepper serine/threonine protein kinases are denoted by Roman numerals. The activation loop region is marked by a black line. The conserved threonine and tyrosine residues are indicated by asterisks.

Mentions: The alignments of the 19 MAPKs and five MAPKKs of pepper were performed using clustal X. The results of the alignment indicated that all 19 identified MAPKs contain 11 domains (I-XI) that are conserved in the serine/threonine protein kinases from other plant species (Figure 1). Several threonine and tyrosine residues located between domains VII and VIII of all 19 pepper MAPKs were conserved when compared to those of other plant species. These constitute the activation loop and are known to be phosphorylated during MAPK activation. Of the 19 MAPKs, nine contained the TDY motif, another nine contained the TEY motif, and only CaMPK4-3 contained the MEY motif. These results are consistent with that in rice and tomato, which each contains only one MAPK with a MEY domain (Zhang et al., 2013). Additionally, the majority of the TDY MAPKs had long C-terminal extensions compared to the TDY MAPKs in the pepper genome, which was consistent with the MAPKs from the other plant species (Zhang et al., 2013). The alignment of the five pepper MAPKKs showed the existence of 11 conserved motifs including S/T-X5-S/T (activation loop) and the DIK motif (active site); (Figure 2). These motifs were previously found in MAPKKs from other plant species (Hamel et al., 2006).


Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum.

Liu Z, Shi L, Liu Y, Tang Q, Shen L, Yang S, Cai J, Yu H, Wang R, Wen J, Lin Y, Hu J, Liu C, Zhang Y, Mou S, He S - Front Plant Sci (2015)

Multiple sequence alignment of the amino acid sequences of pepper MAPKs and MAPKs from other plant species (tomato, Arabidopsis, and rice). The alignment was performed using Clustal X. The 11 conserved domains (I–XI) present in pepper serine/threonine protein kinases are denoted by Roman numerals. The activation loop region is marked by a black line. The conserved threonine and tyrosine residues are indicated by asterisks.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585111&req=5

Figure 1: Multiple sequence alignment of the amino acid sequences of pepper MAPKs and MAPKs from other plant species (tomato, Arabidopsis, and rice). The alignment was performed using Clustal X. The 11 conserved domains (I–XI) present in pepper serine/threonine protein kinases are denoted by Roman numerals. The activation loop region is marked by a black line. The conserved threonine and tyrosine residues are indicated by asterisks.
Mentions: The alignments of the 19 MAPKs and five MAPKKs of pepper were performed using clustal X. The results of the alignment indicated that all 19 identified MAPKs contain 11 domains (I-XI) that are conserved in the serine/threonine protein kinases from other plant species (Figure 1). Several threonine and tyrosine residues located between domains VII and VIII of all 19 pepper MAPKs were conserved when compared to those of other plant species. These constitute the activation loop and are known to be phosphorylated during MAPK activation. Of the 19 MAPKs, nine contained the TDY motif, another nine contained the TEY motif, and only CaMPK4-3 contained the MEY motif. These results are consistent with that in rice and tomato, which each contains only one MAPK with a MEY domain (Zhang et al., 2013). Additionally, the majority of the TDY MAPKs had long C-terminal extensions compared to the TDY MAPKs in the pepper genome, which was consistent with the MAPKs from the other plant species (Zhang et al., 2013). The alignment of the five pepper MAPKKs showed the existence of 11 conserved motifs including S/T-X5-S/T (activation loop) and the DIK motif (active site); (Figure 2). These motifs were previously found in MAPKKs from other plant species (Hamel et al., 2006).

Bottom Line: However, significant divergences were also found.Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper.These results will facilitate future functional characterization of MAPK cascades in pepper.

View Article: PubMed Central - PubMed

Affiliation: National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University Fuzhou, China ; College of Plant Protection, Fujian Agriculture and Forestry University Fuzhou, China.

ABSTRACT
The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper.

No MeSH data available.


Related in: MedlinePlus