Limits...
Beauty and the beholder: the role of visual sensitivity in visual preference.

Spehar B, Wong S, van de Klundert S, Lui J, Clifford CW, Taylor RP - Front Hum Neurosci (2015)

Bottom Line: We measure sensitivity to simple visual patterns (sine-wave gratings varying in spatial frequency and random textures with varying scaling exponent) and find that they are highly correlated with visual preferences exhibited by the same observers.Although we do not attempt to offer a comprehensive neural model of aesthetic experience, we demonstrate a strong relationship between visual sensitivity and preference for simple visual patterns.Broadly speaking, our results support assertions that there is a close relationship between aesthetic experience and the sensory coding of natural stimuli.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, UNSW Australia Sydney, NSW, Australia.

ABSTRACT
For centuries, the essence of aesthetic experience has remained one of the most intriguing mysteries for philosophers, artists, art historians and scientists alike. Recently, views emphasizing the link between aesthetics, perception and brain function have become increasingly prevalent (Ramachandran and Hirstein, 1999; Zeki, 1999; Livingstone, 2002; Ishizu and Zeki, 2013). The link between art and the fractal-like structure of natural images has also been highlighted (Spehar et al., 2003; Graham and Field, 2007; Graham and Redies, 2010). Motivated by these claims and our previous findings that humans display a consistent preference across various images with fractal-like statistics, here we explore the possibility that observers' preference for visual patterns might be related to their sensitivity for such patterns. We measure sensitivity to simple visual patterns (sine-wave gratings varying in spatial frequency and random textures with varying scaling exponent) and find that they are highly correlated with visual preferences exhibited by the same observers. Although we do not attempt to offer a comprehensive neural model of aesthetic experience, we demonstrate a strong relationship between visual sensitivity and preference for simple visual patterns. Broadly speaking, our results support assertions that there is a close relationship between aesthetic experience and the sensory coding of natural stimuli.

No MeSH data available.


The average sensitivity and preference results for 11 participants with Series 1 images (left panel) and 11 participants with Series 2 images (right panel). The average data points are expressed as the standardized z-scores with error bars representing 95% Confidence Intervals.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585069&req=5

Figure 2: The average sensitivity and preference results for 11 participants with Series 1 images (left panel) and 11 participants with Series 2 images (right panel). The average data points are expressed as the standardized z-scores with error bars representing 95% Confidence Intervals.

Mentions: In order to compare the pattern of results from the two tasks on a common scale, the sensitivity (inverse detection threshold) and preference (proportion chosen) data were transformed into standardized z scores such that, for each individual observer, the corresponding sensitivity and preference data sum to 0 across the amplitude spectrum slope values. The panels in Figure 2 show the average sensitivity and preference standardized scores for 11 participants with Series A images (left panel), and 11 participants with Series B images (right panel). The error bars correspond to 95% Confidence Intervals associated with the respective condition means. For both data sets, a (2) × (6) repeated measures ANOVA revealed significant main effect of slope (F(5) = 21.25, p < 0.0001 and F(5) = 25.45, p < 0.0001 for Series 1 and Series 2 data sets respectively). Given that the raw scores in the detection sensitivity and visual preference were standardized, the comparison between the task is not meaningful (with the F ratio of 0 in both data sets) However, for both data sets there was a significant Slope × Task interaction (F(5,50) = 6.407, p < 0.0001 and F(5,50) = 7.535, p < 0.0001 for Series 1 and Series 2 data sets respectively).


Beauty and the beholder: the role of visual sensitivity in visual preference.

Spehar B, Wong S, van de Klundert S, Lui J, Clifford CW, Taylor RP - Front Hum Neurosci (2015)

The average sensitivity and preference results for 11 participants with Series 1 images (left panel) and 11 participants with Series 2 images (right panel). The average data points are expressed as the standardized z-scores with error bars representing 95% Confidence Intervals.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585069&req=5

Figure 2: The average sensitivity and preference results for 11 participants with Series 1 images (left panel) and 11 participants with Series 2 images (right panel). The average data points are expressed as the standardized z-scores with error bars representing 95% Confidence Intervals.
Mentions: In order to compare the pattern of results from the two tasks on a common scale, the sensitivity (inverse detection threshold) and preference (proportion chosen) data were transformed into standardized z scores such that, for each individual observer, the corresponding sensitivity and preference data sum to 0 across the amplitude spectrum slope values. The panels in Figure 2 show the average sensitivity and preference standardized scores for 11 participants with Series A images (left panel), and 11 participants with Series B images (right panel). The error bars correspond to 95% Confidence Intervals associated with the respective condition means. For both data sets, a (2) × (6) repeated measures ANOVA revealed significant main effect of slope (F(5) = 21.25, p < 0.0001 and F(5) = 25.45, p < 0.0001 for Series 1 and Series 2 data sets respectively). Given that the raw scores in the detection sensitivity and visual preference were standardized, the comparison between the task is not meaningful (with the F ratio of 0 in both data sets) However, for both data sets there was a significant Slope × Task interaction (F(5,50) = 6.407, p < 0.0001 and F(5,50) = 7.535, p < 0.0001 for Series 1 and Series 2 data sets respectively).

Bottom Line: We measure sensitivity to simple visual patterns (sine-wave gratings varying in spatial frequency and random textures with varying scaling exponent) and find that they are highly correlated with visual preferences exhibited by the same observers.Although we do not attempt to offer a comprehensive neural model of aesthetic experience, we demonstrate a strong relationship between visual sensitivity and preference for simple visual patterns.Broadly speaking, our results support assertions that there is a close relationship between aesthetic experience and the sensory coding of natural stimuli.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, UNSW Australia Sydney, NSW, Australia.

ABSTRACT
For centuries, the essence of aesthetic experience has remained one of the most intriguing mysteries for philosophers, artists, art historians and scientists alike. Recently, views emphasizing the link between aesthetics, perception and brain function have become increasingly prevalent (Ramachandran and Hirstein, 1999; Zeki, 1999; Livingstone, 2002; Ishizu and Zeki, 2013). The link between art and the fractal-like structure of natural images has also been highlighted (Spehar et al., 2003; Graham and Field, 2007; Graham and Redies, 2010). Motivated by these claims and our previous findings that humans display a consistent preference across various images with fractal-like statistics, here we explore the possibility that observers' preference for visual patterns might be related to their sensitivity for such patterns. We measure sensitivity to simple visual patterns (sine-wave gratings varying in spatial frequency and random textures with varying scaling exponent) and find that they are highly correlated with visual preferences exhibited by the same observers. Although we do not attempt to offer a comprehensive neural model of aesthetic experience, we demonstrate a strong relationship between visual sensitivity and preference for simple visual patterns. Broadly speaking, our results support assertions that there is a close relationship between aesthetic experience and the sensory coding of natural stimuli.

No MeSH data available.