Limits...
Home-based neurologic music therapy for upper limb rehabilitation with stroke patients at community rehabilitation stage-a feasibility study protocol.

Street AJ, Magee WL, Odell-Miller H, Bateman A, Fachner JC - Front Hum Neurosci (2015)

Bottom Line: The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance.A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies.The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes.

View Article: PubMed Central - PubMed

Affiliation: Music and Performing Arts, Music for Health Research Centre, Anglia Ruskin University Cambridge, UK.

ABSTRACT

Background: Impairment of upper limb function following stroke is more common than lower limb impairment and is also more resistant to treatment. Several lab-based studies with stroke patients have produced statistically significant gains in upper limb function when using musical instrument playing and techniques where rhythm acts as an external time-keeper for the priming and timing of upper limb movements.

Methods: For this feasibility study a small sample size of 14 participants (3-60 months post stroke) has been determined through clinical discussion between the researcher and study host in order to test for management, feasibility and effects, before planning a larger trial determined through power analysis. A cross-over design with five repeated measures will be used, whereby participants will be randomized into either a treatment (n = 7) or wait list control (n = 7) group. Intervention will take place twice weekly over 6 weeks. The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance. A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies.

Discussion: Before evaluating the effectiveness of a home-based intervention in a larger scale study, it is important to assess whether implementation of the trial methodology is feasible. This study investigates the feasibility, efficacy and patient experience of a music therapy treatment protocol comprising a chart of 12 different instrumental exercises and variations, which aims at promoting measurable changes in upper limb function in hemiparetic stroke patients. The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes.

No MeSH data available.


Related in: MedlinePlus

Chord spacing for the “Smart Piano.” Participants aim to touch the white strips at the bottom. As they move their finger up, the notes of the chord are sounded.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585041&req=5

Figure 3: Chord spacing for the “Smart Piano.” Participants aim to touch the white strips at the bottom. As they move their finger up, the notes of the chord are sounded.

Mentions: The instruments played by participants in this study have been selected for their portability, flexibility in offering various spatial arrangements, and the quality and range of audio feedback that they can offer. These are important considerations for a treatment that is being delivered in the home environment, where access and space might prevent the use of many conventional acoustic instruments. Percussion instruments are accessible to non-musicians and require a wide range of movements and movement sequences, potentially employing all muscle groups (Thaut, 2008). They can also be positioned for unilateral and bilateral playing, and played using hands, fingers and other finger joints such as the knuckles, or with beaters and drum-sticks. There is also a playing pattern that facilitates grip and release finger movements (see pattern 11 in the TIMP chart, using hand held percussion). Computer tablet touch screen instruments are also accessible to non-musicians and offer the appeal of more contemporary sound-worlds, with which some participants may identify and be more motivated by than with the acoustic instruments. Audio feedback and quality from the tablet touch screen instruments will be enhanced through the use of a “Jawbone Jambox” Bluetooth, wireless speaker, mounted on the microphone stand that holds the tablets; also saving space and eliminating the need for cables (with the exception of TIMP 8, which requires two tablets). The speaker is extremely resonant and will also be used to provide tactile feedback by placing it on table surfaces as participants play exercises whilst seated at a table. The touchscreen instruments and speaker will not provide the same quality or degree of tactile and acoustic feedback as acoustic instruments, but for this study they were considered to be most suitable to meet the need for a wide enough range of visual targets for fine motor exercises, whilst being portable and offering a variety of motivating instrumental sounds. Playing techniques for tablets do not require technique acquired through musical training and are easily accessible using finger tips, finger and thumb joints and movements not commonly associated with the sounds that they produce; such as that of the “smartpiano,” which requires fingers to be moved vertically up and down across bars on the screen that represent and produce piano chords (see Figure 3), with the bass notes in the lower portion of each bar. Playing these touch screen instruments also requires more shoulder stability and controlled upper limb abduction, adduction, flexion and extension movement patterns than is the case with the larger acoustic instruments which have much larger target areas that are easier to hit.


Home-based neurologic music therapy for upper limb rehabilitation with stroke patients at community rehabilitation stage-a feasibility study protocol.

Street AJ, Magee WL, Odell-Miller H, Bateman A, Fachner JC - Front Hum Neurosci (2015)

Chord spacing for the “Smart Piano.” Participants aim to touch the white strips at the bottom. As they move their finger up, the notes of the chord are sounded.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585041&req=5

Figure 3: Chord spacing for the “Smart Piano.” Participants aim to touch the white strips at the bottom. As they move their finger up, the notes of the chord are sounded.
Mentions: The instruments played by participants in this study have been selected for their portability, flexibility in offering various spatial arrangements, and the quality and range of audio feedback that they can offer. These are important considerations for a treatment that is being delivered in the home environment, where access and space might prevent the use of many conventional acoustic instruments. Percussion instruments are accessible to non-musicians and require a wide range of movements and movement sequences, potentially employing all muscle groups (Thaut, 2008). They can also be positioned for unilateral and bilateral playing, and played using hands, fingers and other finger joints such as the knuckles, or with beaters and drum-sticks. There is also a playing pattern that facilitates grip and release finger movements (see pattern 11 in the TIMP chart, using hand held percussion). Computer tablet touch screen instruments are also accessible to non-musicians and offer the appeal of more contemporary sound-worlds, with which some participants may identify and be more motivated by than with the acoustic instruments. Audio feedback and quality from the tablet touch screen instruments will be enhanced through the use of a “Jawbone Jambox” Bluetooth, wireless speaker, mounted on the microphone stand that holds the tablets; also saving space and eliminating the need for cables (with the exception of TIMP 8, which requires two tablets). The speaker is extremely resonant and will also be used to provide tactile feedback by placing it on table surfaces as participants play exercises whilst seated at a table. The touchscreen instruments and speaker will not provide the same quality or degree of tactile and acoustic feedback as acoustic instruments, but for this study they were considered to be most suitable to meet the need for a wide enough range of visual targets for fine motor exercises, whilst being portable and offering a variety of motivating instrumental sounds. Playing techniques for tablets do not require technique acquired through musical training and are easily accessible using finger tips, finger and thumb joints and movements not commonly associated with the sounds that they produce; such as that of the “smartpiano,” which requires fingers to be moved vertically up and down across bars on the screen that represent and produce piano chords (see Figure 3), with the bass notes in the lower portion of each bar. Playing these touch screen instruments also requires more shoulder stability and controlled upper limb abduction, adduction, flexion and extension movement patterns than is the case with the larger acoustic instruments which have much larger target areas that are easier to hit.

Bottom Line: The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance.A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies.The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes.

View Article: PubMed Central - PubMed

Affiliation: Music and Performing Arts, Music for Health Research Centre, Anglia Ruskin University Cambridge, UK.

ABSTRACT

Background: Impairment of upper limb function following stroke is more common than lower limb impairment and is also more resistant to treatment. Several lab-based studies with stroke patients have produced statistically significant gains in upper limb function when using musical instrument playing and techniques where rhythm acts as an external time-keeper for the priming and timing of upper limb movements.

Methods: For this feasibility study a small sample size of 14 participants (3-60 months post stroke) has been determined through clinical discussion between the researcher and study host in order to test for management, feasibility and effects, before planning a larger trial determined through power analysis. A cross-over design with five repeated measures will be used, whereby participants will be randomized into either a treatment (n = 7) or wait list control (n = 7) group. Intervention will take place twice weekly over 6 weeks. The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance. A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies.

Discussion: Before evaluating the effectiveness of a home-based intervention in a larger scale study, it is important to assess whether implementation of the trial methodology is feasible. This study investigates the feasibility, efficacy and patient experience of a music therapy treatment protocol comprising a chart of 12 different instrumental exercises and variations, which aims at promoting measurable changes in upper limb function in hemiparetic stroke patients. The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes.

No MeSH data available.


Related in: MedlinePlus