Limits...
Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

Bottom Line: The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity.The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.


Scanning electron micrographs of S. aureus(A–C), B. subtilis(D–F), and (G–J) cells: control (A,D,G), treated with D-limonene organogel-nanoemulsion (B,E,H), treated with D-limonene organogel-nanoemulsion with nisin (C,F,I), and E.coli treated with organogel-nanoemulsion with nisin (J), at MIC value for 3 h (magnification × 30,000 or 50,000).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585035&req=5

Figure 6: Scanning electron micrographs of S. aureus(A–C), B. subtilis(D–F), and (G–J) cells: control (A,D,G), treated with D-limonene organogel-nanoemulsion (B,E,H), treated with D-limonene organogel-nanoemulsion with nisin (C,F,I), and E.coli treated with organogel-nanoemulsion with nisin (J), at MIC value for 3 h (magnification × 30,000 or 50,000).

Mentions: In order to visualize the effects of D-limonene organogel-nanoemulsion with and without nisin against the cell membranes of the microbial cultures, we employed SEM of cells treated at the previously established MIC values, of D-limonene organogel-nanoemulsion (D-limonene 20% w/w), and D-limonene organogel-nanoemulsion with nisin (D-limonene 20%, nisin 6% w/w). As shown in Figure 6, a different degree of deformation and distortion was observed following the addition of D-limonene organogel- nanoemulsion in to the three microorganisms (Figures 6B,E,H). However, all microorganisms exposed to the combined treatment of D-limonene organogel-nanoemulsion with nisin suffered an almost serious collapse of the cell structure together with cell lysis (Figures 6C,F,I), which should be attributed to their good synergism against this Gram-negative bacteria, This can demonstrate its outstanding detrimental antimicrobial activity on the cellular integrity of all microorganisms tested. It is also noteworthy that the organogel-nanoemulsion with the inclusion of nisin had no antimicrobial effect on E.coli (Figure 6J), which is in accordance with the MIC results.


Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

Scanning electron micrographs of S. aureus(A–C), B. subtilis(D–F), and (G–J) cells: control (A,D,G), treated with D-limonene organogel-nanoemulsion (B,E,H), treated with D-limonene organogel-nanoemulsion with nisin (C,F,I), and E.coli treated with organogel-nanoemulsion with nisin (J), at MIC value for 3 h (magnification × 30,000 or 50,000).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585035&req=5

Figure 6: Scanning electron micrographs of S. aureus(A–C), B. subtilis(D–F), and (G–J) cells: control (A,D,G), treated with D-limonene organogel-nanoemulsion (B,E,H), treated with D-limonene organogel-nanoemulsion with nisin (C,F,I), and E.coli treated with organogel-nanoemulsion with nisin (J), at MIC value for 3 h (magnification × 30,000 or 50,000).
Mentions: In order to visualize the effects of D-limonene organogel-nanoemulsion with and without nisin against the cell membranes of the microbial cultures, we employed SEM of cells treated at the previously established MIC values, of D-limonene organogel-nanoemulsion (D-limonene 20% w/w), and D-limonene organogel-nanoemulsion with nisin (D-limonene 20%, nisin 6% w/w). As shown in Figure 6, a different degree of deformation and distortion was observed following the addition of D-limonene organogel- nanoemulsion in to the three microorganisms (Figures 6B,E,H). However, all microorganisms exposed to the combined treatment of D-limonene organogel-nanoemulsion with nisin suffered an almost serious collapse of the cell structure together with cell lysis (Figures 6C,F,I), which should be attributed to their good synergism against this Gram-negative bacteria, This can demonstrate its outstanding detrimental antimicrobial activity on the cellular integrity of all microorganisms tested. It is also noteworthy that the organogel-nanoemulsion with the inclusion of nisin had no antimicrobial effect on E.coli (Figure 6J), which is in accordance with the MIC results.

Bottom Line: The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity.The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.