Limits...
Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

Bottom Line: The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity.The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.


Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585035&req=5

Figure 5: Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).

Mentions: In order to assess preservative effect of the organogel-nanoemulsions with D-limonene and nisin in food, determinations of colony-forming units of bacterium in 2% reduced fat milk have been conducted under different concentrations of organogel-nanoemulsions with D-limonene and nisin (control and 2 × MIC). After incubating for 120 h at room temperature for 48 h, colony-forming units of blank and 2 × MIC treated milk samples have been calculated and presented in Figure 5. As shown in the Figure 5, blank milk sample displayed a rapid growth from 72 h and finally reached colony-forming units as many as 7.50 E + 011 CFU/mL at 120 h. However, due to the inhibition influence of 2 × MIC organogel-nanoemulsions, test milk sample shown not only slower growth rate but also limited increasing amount of units (with a final colony-forming units at 1.50 E + 011 CFU/mL around).


Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585035&req=5

Figure 5: Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).
Mentions: In order to assess preservative effect of the organogel-nanoemulsions with D-limonene and nisin in food, determinations of colony-forming units of bacterium in 2% reduced fat milk have been conducted under different concentrations of organogel-nanoemulsions with D-limonene and nisin (control and 2 × MIC). After incubating for 120 h at room temperature for 48 h, colony-forming units of blank and 2 × MIC treated milk samples have been calculated and presented in Figure 5. As shown in the Figure 5, blank milk sample displayed a rapid growth from 72 h and finally reached colony-forming units as many as 7.50 E + 011 CFU/mL at 120 h. However, due to the inhibition influence of 2 × MIC organogel-nanoemulsions, test milk sample shown not only slower growth rate but also limited increasing amount of units (with a final colony-forming units at 1.50 E + 011 CFU/mL around).

Bottom Line: The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity.The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.