Limits...
Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

Bottom Line: The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.


Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585035&req=5

Figure 5: Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).

Mentions: In order to assess preservative effect of the organogel-nanoemulsions with D-limonene and nisin in food, determinations of colony-forming units of bacterium in 2% reduced fat milk have been conducted under different concentrations of organogel-nanoemulsions with D-limonene and nisin (control and 2 × MIC). After incubating for 120 h at room temperature for 48 h, colony-forming units of blank and 2 × MIC treated milk samples have been calculated and presented in Figure 5. As shown in the Figure 5, blank milk sample displayed a rapid growth from 72 h and finally reached colony-forming units as many as 7.50 E + 011 CFU/mL at 120 h. However, due to the inhibition influence of 2 × MIC organogel-nanoemulsions, test milk sample shown not only slower growth rate but also limited increasing amount of units (with a final colony-forming units at 1.50 E + 011 CFU/mL around).


Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585035&req=5

Figure 5: Colony-forming units of bacteria in 2% reduced fat milk by different concentration of D-limonene organogel-nanoemulsion with nisin (control, 2 × MIC).
Mentions: In order to assess preservative effect of the organogel-nanoemulsions with D-limonene and nisin in food, determinations of colony-forming units of bacterium in 2% reduced fat milk have been conducted under different concentrations of organogel-nanoemulsions with D-limonene and nisin (control and 2 × MIC). After incubating for 120 h at room temperature for 48 h, colony-forming units of blank and 2 × MIC treated milk samples have been calculated and presented in Figure 5. As shown in the Figure 5, blank milk sample displayed a rapid growth from 72 h and finally reached colony-forming units as many as 7.50 E + 011 CFU/mL at 120 h. However, due to the inhibition influence of 2 × MIC organogel-nanoemulsions, test milk sample shown not only slower growth rate but also limited increasing amount of units (with a final colony-forming units at 1.50 E + 011 CFU/mL around).

Bottom Line: The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.