Limits...
Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

Bottom Line: The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.


The particle size distributions of organogel-nanoemulsion prepared under different SORs were analyzed by DLS [size distributions by volume (A) and intensity (B)].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585035&req=5

Figure 2: The particle size distributions of organogel-nanoemulsion prepared under different SORs were analyzed by DLS [size distributions by volume (A) and intensity (B)].

Mentions: During the SOR of optimization process, we chose food-grade Tween 80 as the surfactant, prepared a series of nanoemulsions with different SORs (from 1:8 to 1:3) and same homogenizing pressure of 100 MPa. The results in Figure 2 show that all the samples exhibit similar drop size distributions with a main population around in 100 nm and a mall population in 10 nm. The results indicate that organogel-nanoemulsions prepared with very low concentration of surfactant (SOR 1:8) could achieve narrow and uniform particle size distribution, contributing to a low surfactant additions in food.


Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

Bei W, Zhou Y, Xing X, Zahi MR, Li Y, Yuan Q, Liang H - Front Microbiol (2015)

The particle size distributions of organogel-nanoemulsion prepared under different SORs were analyzed by DLS [size distributions by volume (A) and intensity (B)].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585035&req=5

Figure 2: The particle size distributions of organogel-nanoemulsion prepared under different SORs were analyzed by DLS [size distributions by volume (A) and intensity (B)].
Mentions: During the SOR of optimization process, we chose food-grade Tween 80 as the surfactant, prepared a series of nanoemulsions with different SORs (from 1:8 to 1:3) and same homogenizing pressure of 100 MPa. The results in Figure 2 show that all the samples exhibit similar drop size distributions with a main population around in 100 nm and a mall population in 10 nm. The results indicate that organogel-nanoemulsions prepared with very low concentration of surfactant (SOR 1:8) could achieve narrow and uniform particle size distribution, contributing to a low surfactant additions in food.

Bottom Line: The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR.Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release.Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing, China.

ABSTRACT
The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

No MeSH data available.