Limits...
Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

Yang B, Wang XM, Ma HY, Yang T, Jia Y, Zhou J, Dai CC - Front Microbiol (2015)

Bottom Line: A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions.Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages.Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.

View Article: PubMed Central - PubMed

Affiliation: Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing China ; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China.

ABSTRACT
The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.

No MeSH data available.


Potential nitrification rates (PNRs) in rhizosphere soil at four rice growing stages (S0, unplanted soil; S1, tillering; S2, grainfilling; S3, ripening). The values are the means ± SE from three biological replicates. ** indicates significant differences between E+ and E- plants (**P < 0.01). E+, endophyte infected; E-, endophyte uninfected; LN, low N; MN, medium N; HN, high N.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585018&req=5

Figure 1: Potential nitrification rates (PNRs) in rhizosphere soil at four rice growing stages (S0, unplanted soil; S1, tillering; S2, grainfilling; S3, ripening). The values are the means ± SE from three biological replicates. ** indicates significant differences between E+ and E- plants (**P < 0.01). E+, endophyte infected; E-, endophyte uninfected; LN, low N; MN, medium N; HN, high N.

Mentions: Potential nitrification rates, which provide an independent estimate of the abundance of ammonia-oxidizers, were significantly increased by increasing the available N concentration. Interestingly, the PNR of E+ treatments were 30.2% (P < 0.01) and 24.0% (P < 0.01) higher than that of E- treatments under low N conditions at the S1 and S2 stages (Figure 1). The growth stage of rice plants also influenced the PNR in rhizosphere soil, and the PNR increased soon after the rice transplanting with the maximum recorded at S2 stage.


Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

Yang B, Wang XM, Ma HY, Yang T, Jia Y, Zhou J, Dai CC - Front Microbiol (2015)

Potential nitrification rates (PNRs) in rhizosphere soil at four rice growing stages (S0, unplanted soil; S1, tillering; S2, grainfilling; S3, ripening). The values are the means ± SE from three biological replicates. ** indicates significant differences between E+ and E- plants (**P < 0.01). E+, endophyte infected; E-, endophyte uninfected; LN, low N; MN, medium N; HN, high N.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585018&req=5

Figure 1: Potential nitrification rates (PNRs) in rhizosphere soil at four rice growing stages (S0, unplanted soil; S1, tillering; S2, grainfilling; S3, ripening). The values are the means ± SE from three biological replicates. ** indicates significant differences between E+ and E- plants (**P < 0.01). E+, endophyte infected; E-, endophyte uninfected; LN, low N; MN, medium N; HN, high N.
Mentions: Potential nitrification rates, which provide an independent estimate of the abundance of ammonia-oxidizers, were significantly increased by increasing the available N concentration. Interestingly, the PNR of E+ treatments were 30.2% (P < 0.01) and 24.0% (P < 0.01) higher than that of E- treatments under low N conditions at the S1 and S2 stages (Figure 1). The growth stage of rice plants also influenced the PNR in rhizosphere soil, and the PNR increased soon after the rice transplanting with the maximum recorded at S2 stage.

Bottom Line: A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions.Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages.Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.

View Article: PubMed Central - PubMed

Affiliation: Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing China ; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China.

ABSTRACT
The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil.

No MeSH data available.