Limits...
Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs.

Ibeagha-Awemu EM, Zhao X - Front Genet (2015)

Bottom Line: Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species.However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers.Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms.

View Article: PubMed Central - PubMed

Affiliation: Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada Sherbrooke, QC, Canada.

ABSTRACT
Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone, however, explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling, and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens, and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat, and pig) traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.

No MeSH data available.


Related in: MedlinePlus

Increasing evidence shows that the phenotype results from interaction of the genotype, epigenotype and environmental forces. Establishment of the epigenotype can be perturbed during the zygotic stage (maternal environment) and during growth and development by several forces. The effect of such forces on epigenetic marks and influence on the phenotype needs to be recognized and determined before application in improvement breeding/management.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4585011&req=5

Figure 2: Increasing evidence shows that the phenotype results from interaction of the genotype, epigenotype and environmental forces. Establishment of the epigenotype can be perturbed during the zygotic stage (maternal environment) and during growth and development by several forces. The effect of such forces on epigenetic marks and influence on the phenotype needs to be recognized and determined before application in improvement breeding/management.

Mentions: Breed improvement progress achieved through traditional animal breeding methodologies over the years has relied on selection on the basis of the phenotype. The phenotype as it is now known results from interaction of the genotype, epigenotype, and environmental/other factors (Figure 2). Therefore, both genomic and epigenomic information might have been unintentionally applied in animal breed improvement all along. Given overwhelming evidence that epigenetic marks contribute to the appearance of different phenotypes in livestock species, it is probable that the primary goal over the next decade will be to accelerate epigenetic research to enable the understanding of how epigenetic marks influence livestock phenotypes under different conditions. It is only then that epigenomic information can complement genomic information and provide a better understanding of the forces that shape livestock phenotypes and directional application in breed improvement and management practices (Figure 2).


Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs.

Ibeagha-Awemu EM, Zhao X - Front Genet (2015)

Increasing evidence shows that the phenotype results from interaction of the genotype, epigenotype and environmental forces. Establishment of the epigenotype can be perturbed during the zygotic stage (maternal environment) and during growth and development by several forces. The effect of such forces on epigenetic marks and influence on the phenotype needs to be recognized and determined before application in improvement breeding/management.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4585011&req=5

Figure 2: Increasing evidence shows that the phenotype results from interaction of the genotype, epigenotype and environmental forces. Establishment of the epigenotype can be perturbed during the zygotic stage (maternal environment) and during growth and development by several forces. The effect of such forces on epigenetic marks and influence on the phenotype needs to be recognized and determined before application in improvement breeding/management.
Mentions: Breed improvement progress achieved through traditional animal breeding methodologies over the years has relied on selection on the basis of the phenotype. The phenotype as it is now known results from interaction of the genotype, epigenotype, and environmental/other factors (Figure 2). Therefore, both genomic and epigenomic information might have been unintentionally applied in animal breed improvement all along. Given overwhelming evidence that epigenetic marks contribute to the appearance of different phenotypes in livestock species, it is probable that the primary goal over the next decade will be to accelerate epigenetic research to enable the understanding of how epigenetic marks influence livestock phenotypes under different conditions. It is only then that epigenomic information can complement genomic information and provide a better understanding of the forces that shape livestock phenotypes and directional application in breed improvement and management practices (Figure 2).

Bottom Line: Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species.However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers.Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms.

View Article: PubMed Central - PubMed

Affiliation: Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada Sherbrooke, QC, Canada.

ABSTRACT
Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone, however, explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling, and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens, and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat, and pig) traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.

No MeSH data available.


Related in: MedlinePlus