Limits...
The beneficial effect of testing: an event-related potential study.

Bai CH, Bridger EK, Zimmer HD, Mecklinger A - Front Behav Neurosci (2015)

Bottom Line: The enhanced memory performance for items that are tested as compared to being restudied (the testing effect) is a frequently reported memory phenomenon.In this study, we utilized the ERP correlates of successful memory encoding to address this issue, hypothesizing that if the benefit of testing is due to retrieval-related processes at test then subsequent memory effects (SMEs) should resemble the ERP correlates of retrieval-based processing in their temporal and spatial characteristics.This result shows that the processes which allow items to be more memorable over time share qualitatively similar neural correlates with the processes that relate to successful retrieval at test.

View Article: PubMed Central - PubMed

Affiliation: Experimental Neuropsychology Unit, Department of Psychology, Saarland University Saarbrücken, Germany.

ABSTRACT
The enhanced memory performance for items that are tested as compared to being restudied (the testing effect) is a frequently reported memory phenomenon. According to the episodic context account of the testing effect, this beneficial effect of testing is related to a process which reinstates the previously learnt episodic information. Few studies have explored the neural correlates of this effect at the time point when testing takes place, however. In this study, we utilized the ERP correlates of successful memory encoding to address this issue, hypothesizing that if the benefit of testing is due to retrieval-related processes at test then subsequent memory effects (SMEs) should resemble the ERP correlates of retrieval-based processing in their temporal and spatial characteristics. Participants were asked to learn Swahili-German word pairs before items were presented in either a testing or a restudy condition. Memory performance was assessed immediately and 1-day later with a cued recall task. Successfully recalling items at test increased the likelihood that items were remembered over time compared to items which were only restudied. An ERP subsequent memory contrast (later remembered vs. later forgotten tested items), which reflects the engagement of processes that ensure items are recallable the next day were topographically comparable with the ERP correlate of immediate recollection (immediately remembered vs. immediately forgotten tested items). This result shows that the processes which allow items to be more memorable over time share qualitatively similar neural correlates with the processes that relate to successful retrieval at test. This finding supports the notion that testing is more beneficial than restudying on memory performance over time because of its engagement of retrieval processes, such as the re-encoding of actively retrieved memory representations.

No MeSH data available.


Related in: MedlinePlus

(A) Illustration of the procedure realized in each session. (B) Procedure for one cycle on Day 1. Five such cycles each consisting of 22 different items were run on Day 1. The procedure of the final cued recall test on Day 2 was identical to Day 1 recall except for a longer response deadline to 6000 ms and the testing of all 110 items, which is not illustrated in this figure. Note that in Phase 2 (the EEG session) participants did not respond before the offset of the restudy or testing cues which were presented for 2000 ms, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4584999&req=5

Figure 1: (A) Illustration of the procedure realized in each session. (B) Procedure for one cycle on Day 1. Five such cycles each consisting of 22 different items were run on Day 1. The procedure of the final cued recall test on Day 2 was identical to Day 1 recall except for a longer response deadline to 6000 ms and the testing of all 110 items, which is not illustrated in this figure. Note that in Phase 2 (the EEG session) participants did not respond before the offset of the restudy or testing cues which were presented for 2000 ms, respectively.

Mentions: The experiment consisted of two sessions separated by 1 week. Each session comprised five cycles (each consisting of Phases 1 and 2) and a 2-day final recall (Phase 3). In each cycle participants studied 22 word-pairs. In the final test all 110 word-pairs studied on the previous day were tested (see Figure 1A). During the initial learning phase, word-pairs were presented three times in randomized order. Phase 2—during which EEG was recorded—followed initial learning. In Phase 2, 11 word-pairs were restudied again whereas the remaining 11 word-pairs of the study list were tested. Additionally, at the end of each cycle all 22 word-pairs were tested in a cued recall task (Day 1 recall). In this test, only Swahili words were presented as cues and participants had to retrieve the associated German words. Participants processed five of these study cycles on Day 1. Approximately 20~28 h later, participants returned for the final cued recall test (hereafter, Day 2 recall). To obtain sufficiently large trial numbers for the ERP analyses, the same procedure was repeated a week later with a different set of stimuli. In total, participants processed 110 items in the restudy and 110 items in the testing condition.


The beneficial effect of testing: an event-related potential study.

Bai CH, Bridger EK, Zimmer HD, Mecklinger A - Front Behav Neurosci (2015)

(A) Illustration of the procedure realized in each session. (B) Procedure for one cycle on Day 1. Five such cycles each consisting of 22 different items were run on Day 1. The procedure of the final cued recall test on Day 2 was identical to Day 1 recall except for a longer response deadline to 6000 ms and the testing of all 110 items, which is not illustrated in this figure. Note that in Phase 2 (the EEG session) participants did not respond before the offset of the restudy or testing cues which were presented for 2000 ms, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4584999&req=5

Figure 1: (A) Illustration of the procedure realized in each session. (B) Procedure for one cycle on Day 1. Five such cycles each consisting of 22 different items were run on Day 1. The procedure of the final cued recall test on Day 2 was identical to Day 1 recall except for a longer response deadline to 6000 ms and the testing of all 110 items, which is not illustrated in this figure. Note that in Phase 2 (the EEG session) participants did not respond before the offset of the restudy or testing cues which were presented for 2000 ms, respectively.
Mentions: The experiment consisted of two sessions separated by 1 week. Each session comprised five cycles (each consisting of Phases 1 and 2) and a 2-day final recall (Phase 3). In each cycle participants studied 22 word-pairs. In the final test all 110 word-pairs studied on the previous day were tested (see Figure 1A). During the initial learning phase, word-pairs were presented three times in randomized order. Phase 2—during which EEG was recorded—followed initial learning. In Phase 2, 11 word-pairs were restudied again whereas the remaining 11 word-pairs of the study list were tested. Additionally, at the end of each cycle all 22 word-pairs were tested in a cued recall task (Day 1 recall). In this test, only Swahili words were presented as cues and participants had to retrieve the associated German words. Participants processed five of these study cycles on Day 1. Approximately 20~28 h later, participants returned for the final cued recall test (hereafter, Day 2 recall). To obtain sufficiently large trial numbers for the ERP analyses, the same procedure was repeated a week later with a different set of stimuli. In total, participants processed 110 items in the restudy and 110 items in the testing condition.

Bottom Line: The enhanced memory performance for items that are tested as compared to being restudied (the testing effect) is a frequently reported memory phenomenon.In this study, we utilized the ERP correlates of successful memory encoding to address this issue, hypothesizing that if the benefit of testing is due to retrieval-related processes at test then subsequent memory effects (SMEs) should resemble the ERP correlates of retrieval-based processing in their temporal and spatial characteristics.This result shows that the processes which allow items to be more memorable over time share qualitatively similar neural correlates with the processes that relate to successful retrieval at test.

View Article: PubMed Central - PubMed

Affiliation: Experimental Neuropsychology Unit, Department of Psychology, Saarland University Saarbrücken, Germany.

ABSTRACT
The enhanced memory performance for items that are tested as compared to being restudied (the testing effect) is a frequently reported memory phenomenon. According to the episodic context account of the testing effect, this beneficial effect of testing is related to a process which reinstates the previously learnt episodic information. Few studies have explored the neural correlates of this effect at the time point when testing takes place, however. In this study, we utilized the ERP correlates of successful memory encoding to address this issue, hypothesizing that if the benefit of testing is due to retrieval-related processes at test then subsequent memory effects (SMEs) should resemble the ERP correlates of retrieval-based processing in their temporal and spatial characteristics. Participants were asked to learn Swahili-German word pairs before items were presented in either a testing or a restudy condition. Memory performance was assessed immediately and 1-day later with a cued recall task. Successfully recalling items at test increased the likelihood that items were remembered over time compared to items which were only restudied. An ERP subsequent memory contrast (later remembered vs. later forgotten tested items), which reflects the engagement of processes that ensure items are recallable the next day were topographically comparable with the ERP correlate of immediate recollection (immediately remembered vs. immediately forgotten tested items). This result shows that the processes which allow items to be more memorable over time share qualitatively similar neural correlates with the processes that relate to successful retrieval at test. This finding supports the notion that testing is more beneficial than restudying on memory performance over time because of its engagement of retrieval processes, such as the re-encoding of actively retrieved memory representations.

No MeSH data available.


Related in: MedlinePlus