Limits...
Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: a study of short-term test-retest reliability.

Mathewson KJ, Hashemi A, Sheng B, Sekuler AB, Bennett PJ, Schmidt LA - Front Aging Neurosci (2015)

Bottom Line: Pearson and intra-class correlations indicated acceptable test-retest reliability for alpha power and asymmetry measures in all regions.Interestingly, alpha asymmetry appeared to be less affected by the task than was alpha power.Findings suggest that alpha asymmetry may reflect more enduring, "trait-like" characteristics, while alpha power may reflect more "state-like" processes in older adults.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada.

ABSTRACT
Although regional alpha power and asymmetry measures have been widely used as indices of individual differences in emotional processing and affective style in younger populations, there have been relatively few studies that have examined these measures in older adults. Here, we examined the short-term test-retest reliability of resting regional alpha power (7.5-12.5 Hz) and asymmetry in a sample of 38 active, community-dwelling older adults (M age = 71.2, SD = 6.5 years). Resting electroencephalogram recordings were made before and after a perceptual computer task. Pearson and intra-class correlations indicated acceptable test-retest reliability for alpha power and asymmetry measures in all regions. Interestingly, alpha asymmetry appeared to be less affected by the task than was alpha power. Findings suggest that alpha asymmetry may reflect more enduring, "trait-like" characteristics, while alpha power may reflect more "state-like" processes in older adults.

No MeSH data available.


Eyes-closed EEG power in the right hemisphere, by frequency, region, and condition (T1 vs. T2).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4584992&req=5

Figure 4: Eyes-closed EEG power in the right hemisphere, by frequency, region, and condition (T1 vs. T2).

Mentions: Eyes-closed pre- and post-task resting EEG activity was analyzed in a 2 × 5 × 2 × 4 omnibus ANOVA, with measurement occasion (pre-task, T1, vs. post-task, T2), frequency (delta, theta, alpha, beta, gamma), hemisphere (left, right), and region (mid-frontal, central, parietal, occipital) as factors. Main effects of measurement occasion, frequency, and region (ps < 0.001) were qualified by two-way interactions. Frequency interacted with measurement occasion, F(4,148) = 3.32, p < 0.03, = 0.08, and region F(12,444) = 16.97, p < 0.001, = 0.31, and the regional effect interacted with hemisphere F(3,111) = 4.04, p < 0.02, = 0.10, with no other effects or interactions, ps > 0.12. Unadjusted pairwise tests indicated that EEG power was greater in the post-task (T2: M = 0.58 μV, SE = 0.09) than pre-task condition (T1: M = 0.35 μV, SE = 0.11; see Figures 3 and 4), and greater at the alpha frequency (M = 1.14 μV, SE = 0.15) than all other frequencies (ps < 0.01), except delta (M = 0.92 μV, SE = 0.09), p > 0.10. EEG power was also greater in mid-frontal (M = 0.66 μV, SE = 0.11) than central (M = 0.31 μV, SE = 0.10), p < 0.001, parietal (M = 0.33 μV, SE = 0.10), p < 0.001, or occipital regions (M = 0.56 μV, SE = 0.10), p < 0.06. In sum, EC resting EEG power differed by frequency, and where and when it was measured, with a pattern that suggested mid-frontal asymmetry in the alpha band frequency.


Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: a study of short-term test-retest reliability.

Mathewson KJ, Hashemi A, Sheng B, Sekuler AB, Bennett PJ, Schmidt LA - Front Aging Neurosci (2015)

Eyes-closed EEG power in the right hemisphere, by frequency, region, and condition (T1 vs. T2).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4584992&req=5

Figure 4: Eyes-closed EEG power in the right hemisphere, by frequency, region, and condition (T1 vs. T2).
Mentions: Eyes-closed pre- and post-task resting EEG activity was analyzed in a 2 × 5 × 2 × 4 omnibus ANOVA, with measurement occasion (pre-task, T1, vs. post-task, T2), frequency (delta, theta, alpha, beta, gamma), hemisphere (left, right), and region (mid-frontal, central, parietal, occipital) as factors. Main effects of measurement occasion, frequency, and region (ps < 0.001) were qualified by two-way interactions. Frequency interacted with measurement occasion, F(4,148) = 3.32, p < 0.03, = 0.08, and region F(12,444) = 16.97, p < 0.001, = 0.31, and the regional effect interacted with hemisphere F(3,111) = 4.04, p < 0.02, = 0.10, with no other effects or interactions, ps > 0.12. Unadjusted pairwise tests indicated that EEG power was greater in the post-task (T2: M = 0.58 μV, SE = 0.09) than pre-task condition (T1: M = 0.35 μV, SE = 0.11; see Figures 3 and 4), and greater at the alpha frequency (M = 1.14 μV, SE = 0.15) than all other frequencies (ps < 0.01), except delta (M = 0.92 μV, SE = 0.09), p > 0.10. EEG power was also greater in mid-frontal (M = 0.66 μV, SE = 0.11) than central (M = 0.31 μV, SE = 0.10), p < 0.001, parietal (M = 0.33 μV, SE = 0.10), p < 0.001, or occipital regions (M = 0.56 μV, SE = 0.10), p < 0.06. In sum, EC resting EEG power differed by frequency, and where and when it was measured, with a pattern that suggested mid-frontal asymmetry in the alpha band frequency.

Bottom Line: Pearson and intra-class correlations indicated acceptable test-retest reliability for alpha power and asymmetry measures in all regions.Interestingly, alpha asymmetry appeared to be less affected by the task than was alpha power.Findings suggest that alpha asymmetry may reflect more enduring, "trait-like" characteristics, while alpha power may reflect more "state-like" processes in older adults.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada.

ABSTRACT
Although regional alpha power and asymmetry measures have been widely used as indices of individual differences in emotional processing and affective style in younger populations, there have been relatively few studies that have examined these measures in older adults. Here, we examined the short-term test-retest reliability of resting regional alpha power (7.5-12.5 Hz) and asymmetry in a sample of 38 active, community-dwelling older adults (M age = 71.2, SD = 6.5 years). Resting electroencephalogram recordings were made before and after a perceptual computer task. Pearson and intra-class correlations indicated acceptable test-retest reliability for alpha power and asymmetry measures in all regions. Interestingly, alpha asymmetry appeared to be less affected by the task than was alpha power. Findings suggest that alpha asymmetry may reflect more enduring, "trait-like" characteristics, while alpha power may reflect more "state-like" processes in older adults.

No MeSH data available.