Limits...
Identification of resilient individuals and those at risk for performance deficits under stress.

Winslow BD, Carroll MB, Martin JW, Surpris G, Chadderdon GL - Front Neurosci (2015)

Bottom Line: Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements.Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level.Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol.

View Article: PubMed Central - PubMed

Affiliation: Design Interactive, Inc. Orlando, FL, USA.

ABSTRACT
Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress.

No MeSH data available.


Related in: MedlinePlus

Group differences in the STAI and performance score. The experimental group reported significantly higher self-reported stress after the TSST and scenarios 1, 2, and 4 than the control group. Average baseline for the cohort is shown in the dashed line. Performance in scenario decreased linearly with the exception of scenario 5 and was similar for both groups. *p ≤ 0.05; **p ≤ 0.001.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4584989&req=5

Figure 2: Group differences in the STAI and performance score. The experimental group reported significantly higher self-reported stress after the TSST and scenarios 1, 2, and 4 than the control group. Average baseline for the cohort is shown in the dashed line. Performance in scenario decreased linearly with the exception of scenario 5 and was similar for both groups. *p ≤ 0.05; **p ≤ 0.001.

Mentions: Self-reported stress levels are presented in Figure 2. Between groups, the experimental group reported a significant increase in stress as compared to the control group in scenarios 1, 2, and 4 (p ≤ 0.05) and during the TSST (p ≤ 0.001). Within groups, repeated measures ANOVA showed that participants in the control group reported stress levels throughout the experiment that did not differ from baseline with the exception of the 3rd scenario (p ≤ 0.05). In the experimental group, perceived stress increased during the TSST portion of the experiment, as well as during scenarios 3 and 4 (p ≤ 0.05).


Identification of resilient individuals and those at risk for performance deficits under stress.

Winslow BD, Carroll MB, Martin JW, Surpris G, Chadderdon GL - Front Neurosci (2015)

Group differences in the STAI and performance score. The experimental group reported significantly higher self-reported stress after the TSST and scenarios 1, 2, and 4 than the control group. Average baseline for the cohort is shown in the dashed line. Performance in scenario decreased linearly with the exception of scenario 5 and was similar for both groups. *p ≤ 0.05; **p ≤ 0.001.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4584989&req=5

Figure 2: Group differences in the STAI and performance score. The experimental group reported significantly higher self-reported stress after the TSST and scenarios 1, 2, and 4 than the control group. Average baseline for the cohort is shown in the dashed line. Performance in scenario decreased linearly with the exception of scenario 5 and was similar for both groups. *p ≤ 0.05; **p ≤ 0.001.
Mentions: Self-reported stress levels are presented in Figure 2. Between groups, the experimental group reported a significant increase in stress as compared to the control group in scenarios 1, 2, and 4 (p ≤ 0.05) and during the TSST (p ≤ 0.001). Within groups, repeated measures ANOVA showed that participants in the control group reported stress levels throughout the experiment that did not differ from baseline with the exception of the 3rd scenario (p ≤ 0.05). In the experimental group, perceived stress increased during the TSST portion of the experiment, as well as during scenarios 3 and 4 (p ≤ 0.05).

Bottom Line: Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements.Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level.Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol.

View Article: PubMed Central - PubMed

Affiliation: Design Interactive, Inc. Orlando, FL, USA.

ABSTRACT
Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress.

No MeSH data available.


Related in: MedlinePlus