Limits...
Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality.

Liu J, Meng Y, Lv F, Chen J, Ma Y, Wang Y, Chen B, Zhang L, Zhou Z - Front Plant Sci (2015)

Bottom Line: To investigate photosynthetic characteristics of the subtending leaf at the 2-3rd and 10-11th fruiting branch (FBN, FB2-3, and FB10-11), and their relationship with cotton yield and quality, field experiments were conducted using two cotton cultivars, Kemian 1 and Sumian 15.The results showed that with FBN increasing, chlorophyll (Chl) components, Pn and non-photochemical quenching (NPQ) in the subtending leaf significantly declined, while soluble sugar, amino acid and their ratio (C SS/C AA) as well as F v/F m increased.These results indicated that (1) non-radiative dissipation of excess light energy at FB2-3 was reduced to improve solar energy utilization efficiency to compensate for lower Pn, (2) higher NPQ at FB10-11 played a role in leaf photo-damage avoidance, (3) boll weight was related to the C SS/C AA ratio rather than carbohydrates content alone, (4) with FBN increasing, lint biomass and lint/seed ratio increased significantly, but lint yield decreased due to lower relative amount of bolls, and (5) the decreases in Pn, sucrose content and C SS /C AA in the subtending leaf at FB2-3 resulted in lower boll weight and fiber strength.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China ; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences Anyang, China.

ABSTRACT
To investigate photosynthetic characteristics of the subtending leaf at the 2-3rd and 10-11th fruiting branch (FBN, FB2-3, and FB10-11), and their relationship with cotton yield and quality, field experiments were conducted using two cotton cultivars, Kemian 1 and Sumian 15. The results showed that with FBN increasing, chlorophyll (Chl) components, Pn and non-photochemical quenching (NPQ) in the subtending leaf significantly declined, while soluble sugar, amino acid and their ratio (C SS/C AA) as well as F v/F m increased. These results indicated that (1) non-radiative dissipation of excess light energy at FB2-3 was reduced to improve solar energy utilization efficiency to compensate for lower Pn, (2) higher NPQ at FB10-11 played a role in leaf photo-damage avoidance, (3) boll weight was related to the C SS/C AA ratio rather than carbohydrates content alone, (4) with FBN increasing, lint biomass and lint/seed ratio increased significantly, but lint yield decreased due to lower relative amount of bolls, and (5) the decreases in Pn, sucrose content and C SS /C AA in the subtending leaf at FB2-3 resulted in lower boll weight and fiber strength.

No MeSH data available.


Changes in chlorophyll components of the subtending leaf at different fruiting branch nodes (FBN).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4584985&req=5

Figure 2: Changes in chlorophyll components of the subtending leaf at different fruiting branch nodes (FBN).

Mentions: The contents of Chl a, Chl b and Chl(a+b) of the two cultivars decreased significantly from 17 DPA to boll opening during the 3 years, and decreased with FBN increasing (Figure 2). Compared with those at FB2–3, the Chl a and b contents at FB10–11 increased by 9.7–12.9% and 15.5–21.5% for Kemian 1 and by 6.4–32.4% and 14.4–40.5% for Sumian 15, respectively. Moreover, the degree of decrease in Chl(a+b) content at FB10–11 was similar to that of decrease in Chl a content. These results indicated that, of the three photosynthetic pigments, Chl b was the most sensitive to FBN.


Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality.

Liu J, Meng Y, Lv F, Chen J, Ma Y, Wang Y, Chen B, Zhang L, Zhou Z - Front Plant Sci (2015)

Changes in chlorophyll components of the subtending leaf at different fruiting branch nodes (FBN).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4584985&req=5

Figure 2: Changes in chlorophyll components of the subtending leaf at different fruiting branch nodes (FBN).
Mentions: The contents of Chl a, Chl b and Chl(a+b) of the two cultivars decreased significantly from 17 DPA to boll opening during the 3 years, and decreased with FBN increasing (Figure 2). Compared with those at FB2–3, the Chl a and b contents at FB10–11 increased by 9.7–12.9% and 15.5–21.5% for Kemian 1 and by 6.4–32.4% and 14.4–40.5% for Sumian 15, respectively. Moreover, the degree of decrease in Chl(a+b) content at FB10–11 was similar to that of decrease in Chl a content. These results indicated that, of the three photosynthetic pigments, Chl b was the most sensitive to FBN.

Bottom Line: To investigate photosynthetic characteristics of the subtending leaf at the 2-3rd and 10-11th fruiting branch (FBN, FB2-3, and FB10-11), and their relationship with cotton yield and quality, field experiments were conducted using two cotton cultivars, Kemian 1 and Sumian 15.The results showed that with FBN increasing, chlorophyll (Chl) components, Pn and non-photochemical quenching (NPQ) in the subtending leaf significantly declined, while soluble sugar, amino acid and their ratio (C SS/C AA) as well as F v/F m increased.These results indicated that (1) non-radiative dissipation of excess light energy at FB2-3 was reduced to improve solar energy utilization efficiency to compensate for lower Pn, (2) higher NPQ at FB10-11 played a role in leaf photo-damage avoidance, (3) boll weight was related to the C SS/C AA ratio rather than carbohydrates content alone, (4) with FBN increasing, lint biomass and lint/seed ratio increased significantly, but lint yield decreased due to lower relative amount of bolls, and (5) the decreases in Pn, sucrose content and C SS /C AA in the subtending leaf at FB2-3 resulted in lower boll weight and fiber strength.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China ; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences Anyang, China.

ABSTRACT
To investigate photosynthetic characteristics of the subtending leaf at the 2-3rd and 10-11th fruiting branch (FBN, FB2-3, and FB10-11), and their relationship with cotton yield and quality, field experiments were conducted using two cotton cultivars, Kemian 1 and Sumian 15. The results showed that with FBN increasing, chlorophyll (Chl) components, Pn and non-photochemical quenching (NPQ) in the subtending leaf significantly declined, while soluble sugar, amino acid and their ratio (C SS/C AA) as well as F v/F m increased. These results indicated that (1) non-radiative dissipation of excess light energy at FB2-3 was reduced to improve solar energy utilization efficiency to compensate for lower Pn, (2) higher NPQ at FB10-11 played a role in leaf photo-damage avoidance, (3) boll weight was related to the C SS/C AA ratio rather than carbohydrates content alone, (4) with FBN increasing, lint biomass and lint/seed ratio increased significantly, but lint yield decreased due to lower relative amount of bolls, and (5) the decreases in Pn, sucrose content and C SS /C AA in the subtending leaf at FB2-3 resulted in lower boll weight and fiber strength.

No MeSH data available.