Limits...
Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms.

Pandey P, Ramegowda V, Senthil-Kumar M - Front Plant Sci (2015)

Bottom Line: In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss.In addition, plants exhibit shared responses which are common to individual stresses and stress combination.Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Plant Genome Research New Delhi, India.

ABSTRACT
In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat-drought stress as a major abiotic stress combination and, drought-pathogen and heat-pathogen as examples of abiotic-biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance.

No MeSH data available.


Related in: MedlinePlus

Representation of unique and shared responses and the “dominant stressor” concept in A. thaliana, T. aestivum, and S. bicolor under combined heat and drought stress. (A) H, D, and C denote the number of genes modulated (refer to both up- and down-regulated) exclusively under heat, drought, and combined heat and drought stress, respectively. HD, HC, DC, and HDC represent the commonly regulated genes under heat and drought stress, heat and combined, drought and combined stresses, and all the three stresses, respectively. The figure is a graphical representation of the data (number of genes modulated under the different stress condition) provided in three independent cDNA array studies in A. thaliana, T. aestivum, and S. bicolor by Rizhsky et al. (2004), Aprile et al. (2013), and Johnson et al. (2014), respectively. (B) Representation of the “dominant stressor concept” under combined stress. The rectangles represent heat and drought stress. In a given stress combination, two stresses involved differ in severity of impact on plants. The severity of the two stresses is represented by “see saw.” In case of A. thaliana, the molecular responses seen are drought specific with a maximum overlap between genes modulated under drought and combined stress. In T. aestivum, the number of heat stress specific genes outweighs the number of drought specific genes. However, the number of combined stress-specific genes is far greater than the individual stress specific genes and molecular response to the combined stress conditions is mostly unique in this plant. In case of S. bicolor, the number of genes specific to heat stress outweighs the number of drought stress specific genes. The genes commonly modulated (both up- and down-regulated) under heat and combined stress forms the maximum share in the combined stress response. H, heat; D, drought; C, combined stress. The pie chart represents the molecular response of plants to the combined stress and the area denotes the number of genes modulated under each category.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4584981&req=5

Figure 1: Representation of unique and shared responses and the “dominant stressor” concept in A. thaliana, T. aestivum, and S. bicolor under combined heat and drought stress. (A) H, D, and C denote the number of genes modulated (refer to both up- and down-regulated) exclusively under heat, drought, and combined heat and drought stress, respectively. HD, HC, DC, and HDC represent the commonly regulated genes under heat and drought stress, heat and combined, drought and combined stresses, and all the three stresses, respectively. The figure is a graphical representation of the data (number of genes modulated under the different stress condition) provided in three independent cDNA array studies in A. thaliana, T. aestivum, and S. bicolor by Rizhsky et al. (2004), Aprile et al. (2013), and Johnson et al. (2014), respectively. (B) Representation of the “dominant stressor concept” under combined stress. The rectangles represent heat and drought stress. In a given stress combination, two stresses involved differ in severity of impact on plants. The severity of the two stresses is represented by “see saw.” In case of A. thaliana, the molecular responses seen are drought specific with a maximum overlap between genes modulated under drought and combined stress. In T. aestivum, the number of heat stress specific genes outweighs the number of drought specific genes. However, the number of combined stress-specific genes is far greater than the individual stress specific genes and molecular response to the combined stress conditions is mostly unique in this plant. In case of S. bicolor, the number of genes specific to heat stress outweighs the number of drought stress specific genes. The genes commonly modulated (both up- and down-regulated) under heat and combined stress forms the maximum share in the combined stress response. H, heat; D, drought; C, combined stress. The pie chart represents the molecular response of plants to the combined stress and the area denotes the number of genes modulated under each category.

Mentions: When two stresses occur concurrently, the adaptation strategy of plants to stress combination is governed by the interaction of two stresses which is conceived by plants as a new state of stress (Mittler, 2006). Thus, adaptation strategies of plants to combined stress may be different from that of two individual stresses. The overall effect of stress combination on plants depends largely on the age of plant, the inherent stress-resistant or susceptible nature of plant and severity of two stresses involved. Plant responses to stress combination are majorly determined by the more severe stress (dominant stressor, Figures 1B, 2B) such that the physiological and molecular processes of plants subjected to combined stress resemble with those observed under more severe individual stress.


Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms.

Pandey P, Ramegowda V, Senthil-Kumar M - Front Plant Sci (2015)

Representation of unique and shared responses and the “dominant stressor” concept in A. thaliana, T. aestivum, and S. bicolor under combined heat and drought stress. (A) H, D, and C denote the number of genes modulated (refer to both up- and down-regulated) exclusively under heat, drought, and combined heat and drought stress, respectively. HD, HC, DC, and HDC represent the commonly regulated genes under heat and drought stress, heat and combined, drought and combined stresses, and all the three stresses, respectively. The figure is a graphical representation of the data (number of genes modulated under the different stress condition) provided in three independent cDNA array studies in A. thaliana, T. aestivum, and S. bicolor by Rizhsky et al. (2004), Aprile et al. (2013), and Johnson et al. (2014), respectively. (B) Representation of the “dominant stressor concept” under combined stress. The rectangles represent heat and drought stress. In a given stress combination, two stresses involved differ in severity of impact on plants. The severity of the two stresses is represented by “see saw.” In case of A. thaliana, the molecular responses seen are drought specific with a maximum overlap between genes modulated under drought and combined stress. In T. aestivum, the number of heat stress specific genes outweighs the number of drought specific genes. However, the number of combined stress-specific genes is far greater than the individual stress specific genes and molecular response to the combined stress conditions is mostly unique in this plant. In case of S. bicolor, the number of genes specific to heat stress outweighs the number of drought stress specific genes. The genes commonly modulated (both up- and down-regulated) under heat and combined stress forms the maximum share in the combined stress response. H, heat; D, drought; C, combined stress. The pie chart represents the molecular response of plants to the combined stress and the area denotes the number of genes modulated under each category.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4584981&req=5

Figure 1: Representation of unique and shared responses and the “dominant stressor” concept in A. thaliana, T. aestivum, and S. bicolor under combined heat and drought stress. (A) H, D, and C denote the number of genes modulated (refer to both up- and down-regulated) exclusively under heat, drought, and combined heat and drought stress, respectively. HD, HC, DC, and HDC represent the commonly regulated genes under heat and drought stress, heat and combined, drought and combined stresses, and all the three stresses, respectively. The figure is a graphical representation of the data (number of genes modulated under the different stress condition) provided in three independent cDNA array studies in A. thaliana, T. aestivum, and S. bicolor by Rizhsky et al. (2004), Aprile et al. (2013), and Johnson et al. (2014), respectively. (B) Representation of the “dominant stressor concept” under combined stress. The rectangles represent heat and drought stress. In a given stress combination, two stresses involved differ in severity of impact on plants. The severity of the two stresses is represented by “see saw.” In case of A. thaliana, the molecular responses seen are drought specific with a maximum overlap between genes modulated under drought and combined stress. In T. aestivum, the number of heat stress specific genes outweighs the number of drought specific genes. However, the number of combined stress-specific genes is far greater than the individual stress specific genes and molecular response to the combined stress conditions is mostly unique in this plant. In case of S. bicolor, the number of genes specific to heat stress outweighs the number of drought stress specific genes. The genes commonly modulated (both up- and down-regulated) under heat and combined stress forms the maximum share in the combined stress response. H, heat; D, drought; C, combined stress. The pie chart represents the molecular response of plants to the combined stress and the area denotes the number of genes modulated under each category.
Mentions: When two stresses occur concurrently, the adaptation strategy of plants to stress combination is governed by the interaction of two stresses which is conceived by plants as a new state of stress (Mittler, 2006). Thus, adaptation strategies of plants to combined stress may be different from that of two individual stresses. The overall effect of stress combination on plants depends largely on the age of plant, the inherent stress-resistant or susceptible nature of plant and severity of two stresses involved. Plant responses to stress combination are majorly determined by the more severe stress (dominant stressor, Figures 1B, 2B) such that the physiological and molecular processes of plants subjected to combined stress resemble with those observed under more severe individual stress.

Bottom Line: In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss.In addition, plants exhibit shared responses which are common to individual stresses and stress combination.Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance.

View Article: PubMed Central - PubMed

Affiliation: National Institute of Plant Genome Research New Delhi, India.

ABSTRACT
In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat-drought stress as a major abiotic stress combination and, drought-pathogen and heat-pathogen as examples of abiotic-biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance.

No MeSH data available.


Related in: MedlinePlus