Limits...
Application of tea polyphenols in combination with 6-gingerol on shrimp paste of during storage: biogenic amines formation and quality determination.

Cai L, Liu S, Sun L, Wang Y, Ji H, Li J - Front Microbiol (2015)

Bottom Line: The results indicate that treatment with tea polyphenols + 6-gingerol (TPGR) maintained paste appearance, inhibited oxidation of protein and lipids, and reduced microorganism counts compared to control treatment.The efficiency was superior to that of tea polyphenols or 6-gingerol treatment.Our study suggests that TPGR might be a promising candidate for fermented foods due to its synergistic effect to maintain products quality and extending their shelf-life.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Aquatic Product Processing and Safety of Guangdong Province, College of Food Science and Technology, Guangdong Ocean University Zhanjiang, China ; Food Safety Key Lab of Liaoning Province, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University Jinzhou, China.

ABSTRACT
Tea polyphenols (TP) have shown antioxidant activity and antimicrobial properties in the food industry. Assessment of anti-oxidation potential of 6-gingerol (GR) has also been verified. As little is known about the use of tea polyphenols either individually or in combination with 6-gingerol in shrimp paste, we aimed to investigate the effect of tea polyphenols combined with 6-gingerol on the biogenic amines inhibition and quality of shrimp paste stored at 25°C for 160 days. The shrimp paste samples were assigned into four groups: (1) control; (2) tea polyphenols treatment (0.3%); (3) 6-gingerol treatment (0.3%); (4) tea polyphenols (0.15%) + 6-gingerol (0.15%). Samples with no addition were used as control. The results indicate that treatment with tea polyphenols + 6-gingerol (TPGR) maintained paste appearance, inhibited oxidation of protein and lipids, and reduced microorganism counts compared to control treatment. The efficiency was superior to that of tea polyphenols or 6-gingerol treatment. Furthermore, shrimp paste treated with TPGR also exhibited significantly higher inhibition of biogenic amines. Total amino acids determination proved the efficacy of TPGR by maintaining the more amino acids of shrimp paste during ambient temperature storage. Our study suggests that TPGR might be a promising candidate for fermented foods due to its synergistic effect to maintain products quality and extending their shelf-life.

No MeSH data available.


Changes in total viable count (A) and sensory quality (B) of shrimp paste stored at 25°C for 160 days. Each data point is the mean of three replicate samples. Vertical bars represent standard deviation of means. Different small letters indicate significant differences (p < 0.05) between treatments.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4584979&req=5

Figure 2: Changes in total viable count (A) and sensory quality (B) of shrimp paste stored at 25°C for 160 days. Each data point is the mean of three replicate samples. Vertical bars represent standard deviation of means. Different small letters indicate significant differences (p < 0.05) between treatments.

Mentions: The TVB-N, which is mainly composed of ammonia and primary, secondary and tertiary amines, is widely used as an indicator of aquatic products spoilage. TVB-N values of shrimp paste during 25°C storage were gradually increased (Figure 1A). The increasing order of TVB-N values with different treatments at day 160 were: TPGR (85.13 mg N/100 g) < GR (95.75 mg N/100 g) < TP (113.02 mg N/100 g) < Control (178.05 mg N/100 g). Values of control samples were significantly (p < 0.05) higher than TP and GR treated samples. The shrimp paste samples contained TPGR had the higher effect of TVB-N inhibition (p < 0.05) than the TP or GR samples from day 40 to the end. The increase of TVB-N is related to the activity of spoilage bacteria (Kim et al., 2003; Cai et al., 2014). The associated addition of anti-bacterial tea polyphenols and 6-gingerol may have the intensified action on inhibiting the microbial decomposition of shrimp paste protein. Total visible counts (TVC) increased mentioned subsequently (Figure 2) during storage could explain the rise of TVB-N.


Application of tea polyphenols in combination with 6-gingerol on shrimp paste of during storage: biogenic amines formation and quality determination.

Cai L, Liu S, Sun L, Wang Y, Ji H, Li J - Front Microbiol (2015)

Changes in total viable count (A) and sensory quality (B) of shrimp paste stored at 25°C for 160 days. Each data point is the mean of three replicate samples. Vertical bars represent standard deviation of means. Different small letters indicate significant differences (p < 0.05) between treatments.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4584979&req=5

Figure 2: Changes in total viable count (A) and sensory quality (B) of shrimp paste stored at 25°C for 160 days. Each data point is the mean of three replicate samples. Vertical bars represent standard deviation of means. Different small letters indicate significant differences (p < 0.05) between treatments.
Mentions: The TVB-N, which is mainly composed of ammonia and primary, secondary and tertiary amines, is widely used as an indicator of aquatic products spoilage. TVB-N values of shrimp paste during 25°C storage were gradually increased (Figure 1A). The increasing order of TVB-N values with different treatments at day 160 were: TPGR (85.13 mg N/100 g) < GR (95.75 mg N/100 g) < TP (113.02 mg N/100 g) < Control (178.05 mg N/100 g). Values of control samples were significantly (p < 0.05) higher than TP and GR treated samples. The shrimp paste samples contained TPGR had the higher effect of TVB-N inhibition (p < 0.05) than the TP or GR samples from day 40 to the end. The increase of TVB-N is related to the activity of spoilage bacteria (Kim et al., 2003; Cai et al., 2014). The associated addition of anti-bacterial tea polyphenols and 6-gingerol may have the intensified action on inhibiting the microbial decomposition of shrimp paste protein. Total visible counts (TVC) increased mentioned subsequently (Figure 2) during storage could explain the rise of TVB-N.

Bottom Line: The results indicate that treatment with tea polyphenols + 6-gingerol (TPGR) maintained paste appearance, inhibited oxidation of protein and lipids, and reduced microorganism counts compared to control treatment.The efficiency was superior to that of tea polyphenols or 6-gingerol treatment.Our study suggests that TPGR might be a promising candidate for fermented foods due to its synergistic effect to maintain products quality and extending their shelf-life.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Aquatic Product Processing and Safety of Guangdong Province, College of Food Science and Technology, Guangdong Ocean University Zhanjiang, China ; Food Safety Key Lab of Liaoning Province, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University Jinzhou, China.

ABSTRACT
Tea polyphenols (TP) have shown antioxidant activity and antimicrobial properties in the food industry. Assessment of anti-oxidation potential of 6-gingerol (GR) has also been verified. As little is known about the use of tea polyphenols either individually or in combination with 6-gingerol in shrimp paste, we aimed to investigate the effect of tea polyphenols combined with 6-gingerol on the biogenic amines inhibition and quality of shrimp paste stored at 25°C for 160 days. The shrimp paste samples were assigned into four groups: (1) control; (2) tea polyphenols treatment (0.3%); (3) 6-gingerol treatment (0.3%); (4) tea polyphenols (0.15%) + 6-gingerol (0.15%). Samples with no addition were used as control. The results indicate that treatment with tea polyphenols + 6-gingerol (TPGR) maintained paste appearance, inhibited oxidation of protein and lipids, and reduced microorganism counts compared to control treatment. The efficiency was superior to that of tea polyphenols or 6-gingerol treatment. Furthermore, shrimp paste treated with TPGR also exhibited significantly higher inhibition of biogenic amines. Total amino acids determination proved the efficacy of TPGR by maintaining the more amino acids of shrimp paste during ambient temperature storage. Our study suggests that TPGR might be a promising candidate for fermented foods due to its synergistic effect to maintain products quality and extending their shelf-life.

No MeSH data available.