Limits...
Enhancing astronaut performance using sensorimotor adaptability training.

Bloomberg JJ, Peters BT, Cohen HS, Mulavara AP - Front Syst Neurosci (2015)

Bottom Line: This system provides challenges to gait stability.This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly.Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

View Article: PubMed Central - PubMed

Affiliation: Neuroscience Laboratories, Biomedical Research and Environmental Sciences Division, NASA/Johnson Space Center Houston, TX, USA.

ABSTRACT
Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

No MeSH data available.


The Sensorimotor Adaptability (SA) Training System is comprised of a treadmill mounted on a motion base platform. The support surface is manipulated during walking to challenge a subject’s balance and gait stability. Additional sensory variation is presented with a visual scene that is programmed to conflict with the motion of the support surface. Subjects solve different combinations of support surface movement and visual scene motion, improving their ability to adapt while experiencing challenging and conflicting sensory environments.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4584940&req=5

Figure 1: The Sensorimotor Adaptability (SA) Training System is comprised of a treadmill mounted on a motion base platform. The support surface is manipulated during walking to challenge a subject’s balance and gait stability. Additional sensory variation is presented with a visual scene that is programmed to conflict with the motion of the support surface. Subjects solve different combinations of support surface movement and visual scene motion, improving their ability to adapt while experiencing challenging and conflicting sensory environments.

Mentions: Over the last several years with these issues in mind we have developed a training program to enhance the ability to adapt to novel sensory environments: Sensorimotor Adaptability (SA) training. The premise is that by teaching individuals to solve a class of sensorimotor, balance, and/or locomotor challenges, rather than a specific, isolated scenario, they will develop more robust adaptation techniques and will be able to select appropriate strategies faster, especially in situations where they might encounter completely unrehearsed and untrained perturbations to their balance and gait control. Although no laboratory setting or set of exercises can perfectly prepare astronauts for how their first steps on the Martian surface will feel after a 6 month journey through space, we expect that SA training will expedite their successful transition to a new sensory environment in much the same way it did in our ground-based studies. To perform SA training subjects walk on a treadmill that is mounted on a six degree-of-freedom motion base in front of a large screen used to provide visual stimuli, so that both the support surface and the visual input can be manipulated simultaneously (See Figure 1). The studies described below summarize our previous research to validate the concept of adaptive generalization as a training technique and to optimize its delivery to subjects in our treadmill and motion base system.


Enhancing astronaut performance using sensorimotor adaptability training.

Bloomberg JJ, Peters BT, Cohen HS, Mulavara AP - Front Syst Neurosci (2015)

The Sensorimotor Adaptability (SA) Training System is comprised of a treadmill mounted on a motion base platform. The support surface is manipulated during walking to challenge a subject’s balance and gait stability. Additional sensory variation is presented with a visual scene that is programmed to conflict with the motion of the support surface. Subjects solve different combinations of support surface movement and visual scene motion, improving their ability to adapt while experiencing challenging and conflicting sensory environments.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4584940&req=5

Figure 1: The Sensorimotor Adaptability (SA) Training System is comprised of a treadmill mounted on a motion base platform. The support surface is manipulated during walking to challenge a subject’s balance and gait stability. Additional sensory variation is presented with a visual scene that is programmed to conflict with the motion of the support surface. Subjects solve different combinations of support surface movement and visual scene motion, improving their ability to adapt while experiencing challenging and conflicting sensory environments.
Mentions: Over the last several years with these issues in mind we have developed a training program to enhance the ability to adapt to novel sensory environments: Sensorimotor Adaptability (SA) training. The premise is that by teaching individuals to solve a class of sensorimotor, balance, and/or locomotor challenges, rather than a specific, isolated scenario, they will develop more robust adaptation techniques and will be able to select appropriate strategies faster, especially in situations where they might encounter completely unrehearsed and untrained perturbations to their balance and gait control. Although no laboratory setting or set of exercises can perfectly prepare astronauts for how their first steps on the Martian surface will feel after a 6 month journey through space, we expect that SA training will expedite their successful transition to a new sensory environment in much the same way it did in our ground-based studies. To perform SA training subjects walk on a treadmill that is mounted on a six degree-of-freedom motion base in front of a large screen used to provide visual stimuli, so that both the support surface and the visual input can be manipulated simultaneously (See Figure 1). The studies described below summarize our previous research to validate the concept of adaptive generalization as a training technique and to optimize its delivery to subjects in our treadmill and motion base system.

Bottom Line: This system provides challenges to gait stability.This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly.Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

View Article: PubMed Central - PubMed

Affiliation: Neuroscience Laboratories, Biomedical Research and Environmental Sciences Division, NASA/Johnson Space Center Houston, TX, USA.

ABSTRACT
Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

No MeSH data available.