Limits...
The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource.

Baker KS, Burnett E, McGregor H, Deheer-Graham A, Boinett C, Langridge GC, Wailan AM, Cain AK, Thomson NR, Russell JE, Parkhill J - Genome Med (2015)

Bottom Line: To enable that aim, we announce the public availability of the Murray collection through the National Collection of Type Cultures, and present associated metadata with whole genome sequence data for over half of the strains.Using this information we verify the metadata for the collection with regard to subgroup designations, equivalence groupings and plasmid content.This represents an invaluable public resource for the study of these important pathogen groups and the emergence and evolution of antimicrobial resistance.

View Article: PubMed Central - PubMed

Affiliation: Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.

ABSTRACT
Studies of historical isolates inform on the evolution and emergence of important pathogens and phenotypes, including antimicrobial resistance. Crucial to studying antimicrobial resistance are isolates that predate the widespread clinical use of antimicrobials. The Murray collection of several hundred bacterial strains of pre-antibiotic era Enterobacteriaceae is an invaluable resource of historical strains from important pathogen groups. Studies performed on the Collection to date merely exemplify its potential, which will only be realised through the continued effort of many scientific groups. To enable that aim, we announce the public availability of the Murray collection through the National Collection of Type Cultures, and present associated metadata with whole genome sequence data for over half of the strains. Using this information we verify the metadata for the collection with regard to subgroup designations, equivalence groupings and plasmid content. We also present genomic analyses of population structure and determinants of mobilisable antimicrobial resistance to aid strain selection in future studies. This represents an invaluable public resource for the study of these important pathogen groups and the emergence and evolution of antimicrobial resistance.

No MeSH data available.


Related in: MedlinePlus

Presence (red) and absence (blue) of variably present antimicrobial resistance genes among the Collections strains overlaid adjacent to core genome phylogenies for each genus. The presence of genes in reference isolates was not determined (black)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4584482&req=5

Fig3: Presence (red) and absence (blue) of variably present antimicrobial resistance genes among the Collections strains overlaid adjacent to core genome phylogenies for each genus. The presence of genes in reference isolates was not determined (black)

Mentions: Although no phenotypic studies of AMR were done here, AMR has been reported in the pre-antibiotic era Murray Collection strains, including tetracycline resistance in Proteus sp., ampicillin resistance in the Klebsiella and both ampicillin and kanamycin resistance in Escherichia sp. [11, 18, 19]. To aid the future selection of isolates based on the potential presence and absence of AMR, the presence of antimicrobial resistance genes among the strains was determined (Additional file 8: Table S1). This revealed many resistance genes (often known to be chromosomally encoded) that were present across all members of a genus, particularly across Salmonella, Escherichia/Shigella and Klebsiella whose profiles differed greatly, though unsurprisingly, from the more phylogenetically remote Proteus. Some genes however were differentially present among the genera with differing degrees of correlation to population structure (Additional file 8: Table S1, Fig. 3). For example, the tetC gene was present in nearly all Klebsiella isolates, but only a fraction of Escherichia/Shigella and Salmonella isolates, highlighting the potential of the Collection for studying the early horizontal transmission of AMR among Enterobacteriaceae.Fig. 3


The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource.

Baker KS, Burnett E, McGregor H, Deheer-Graham A, Boinett C, Langridge GC, Wailan AM, Cain AK, Thomson NR, Russell JE, Parkhill J - Genome Med (2015)

Presence (red) and absence (blue) of variably present antimicrobial resistance genes among the Collections strains overlaid adjacent to core genome phylogenies for each genus. The presence of genes in reference isolates was not determined (black)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4584482&req=5

Fig3: Presence (red) and absence (blue) of variably present antimicrobial resistance genes among the Collections strains overlaid adjacent to core genome phylogenies for each genus. The presence of genes in reference isolates was not determined (black)
Mentions: Although no phenotypic studies of AMR were done here, AMR has been reported in the pre-antibiotic era Murray Collection strains, including tetracycline resistance in Proteus sp., ampicillin resistance in the Klebsiella and both ampicillin and kanamycin resistance in Escherichia sp. [11, 18, 19]. To aid the future selection of isolates based on the potential presence and absence of AMR, the presence of antimicrobial resistance genes among the strains was determined (Additional file 8: Table S1). This revealed many resistance genes (often known to be chromosomally encoded) that were present across all members of a genus, particularly across Salmonella, Escherichia/Shigella and Klebsiella whose profiles differed greatly, though unsurprisingly, from the more phylogenetically remote Proteus. Some genes however were differentially present among the genera with differing degrees of correlation to population structure (Additional file 8: Table S1, Fig. 3). For example, the tetC gene was present in nearly all Klebsiella isolates, but only a fraction of Escherichia/Shigella and Salmonella isolates, highlighting the potential of the Collection for studying the early horizontal transmission of AMR among Enterobacteriaceae.Fig. 3

Bottom Line: To enable that aim, we announce the public availability of the Murray collection through the National Collection of Type Cultures, and present associated metadata with whole genome sequence data for over half of the strains.Using this information we verify the metadata for the collection with regard to subgroup designations, equivalence groupings and plasmid content.This represents an invaluable public resource for the study of these important pathogen groups and the emergence and evolution of antimicrobial resistance.

View Article: PubMed Central - PubMed

Affiliation: Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.

ABSTRACT
Studies of historical isolates inform on the evolution and emergence of important pathogens and phenotypes, including antimicrobial resistance. Crucial to studying antimicrobial resistance are isolates that predate the widespread clinical use of antimicrobials. The Murray collection of several hundred bacterial strains of pre-antibiotic era Enterobacteriaceae is an invaluable resource of historical strains from important pathogen groups. Studies performed on the Collection to date merely exemplify its potential, which will only be realised through the continued effort of many scientific groups. To enable that aim, we announce the public availability of the Murray collection through the National Collection of Type Cultures, and present associated metadata with whole genome sequence data for over half of the strains. Using this information we verify the metadata for the collection with regard to subgroup designations, equivalence groupings and plasmid content. We also present genomic analyses of population structure and determinants of mobilisable antimicrobial resistance to aid strain selection in future studies. This represents an invaluable public resource for the study of these important pathogen groups and the emergence and evolution of antimicrobial resistance.

No MeSH data available.


Related in: MedlinePlus