Limits...
Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus

DENV-2 induces the expression of IFN-III in C33-A cells. C33-A cells were treated with IFN-λ1 (35 ng/ml) infected with DENV-2 (MOI = 0.1) or pre-treated with IFN-λ1 and subsequently infected with DENV-2. Forty-eight h post-infection, total cellular RNA was isolated and used in end-point RT-PCR for qualitative determination of the IFN-λ1, IFN-λ2, IFN-λ3 genes, using HPRT as an endogenous control gene. a Results of RT-PCR amplification of mock-infected and the three experimental conditions are shown. b Extracts of total protein from each condition were used for Western blotting to determine the presence of IFN-λ1 and IFN-λ2 proteins. Actin was the loading control. A semi quantitative analysis of detected bands normalized to actin was performed using ImageJ software (http://rsb.info.nih.gov/ij/)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4584467&req=5

Fig4: DENV-2 induces the expression of IFN-III in C33-A cells. C33-A cells were treated with IFN-λ1 (35 ng/ml) infected with DENV-2 (MOI = 0.1) or pre-treated with IFN-λ1 and subsequently infected with DENV-2. Forty-eight h post-infection, total cellular RNA was isolated and used in end-point RT-PCR for qualitative determination of the IFN-λ1, IFN-λ2, IFN-λ3 genes, using HPRT as an endogenous control gene. a Results of RT-PCR amplification of mock-infected and the three experimental conditions are shown. b Extracts of total protein from each condition were used for Western blotting to determine the presence of IFN-λ1 and IFN-λ2 proteins. Actin was the loading control. A semi quantitative analysis of detected bands normalized to actin was performed using ImageJ software (http://rsb.info.nih.gov/ij/)

Mentions: To determine whether DENV-2 induces the expression of all subtypes of IFN-λs, four treatments were compared: Mock infection, IFN-λ1 treatment only (35 ng/ml), DENV-infection only (MOI = 0.1), and IFN-λ1 treatment followed by DENV infection. Mock-infected cells had no RT-PCR product for any of the IFN-λ isoforms (Fig. 4a). In contrast, IFN-λ1, IFN-λ2 and IFN-λ3 transcripts were demonstrated by end-point RT-PCR under the other three conditions studied (Fig. 4a).Fig. 4


Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

DENV-2 induces the expression of IFN-III in C33-A cells. C33-A cells were treated with IFN-λ1 (35 ng/ml) infected with DENV-2 (MOI = 0.1) or pre-treated with IFN-λ1 and subsequently infected with DENV-2. Forty-eight h post-infection, total cellular RNA was isolated and used in end-point RT-PCR for qualitative determination of the IFN-λ1, IFN-λ2, IFN-λ3 genes, using HPRT as an endogenous control gene. a Results of RT-PCR amplification of mock-infected and the three experimental conditions are shown. b Extracts of total protein from each condition were used for Western blotting to determine the presence of IFN-λ1 and IFN-λ2 proteins. Actin was the loading control. A semi quantitative analysis of detected bands normalized to actin was performed using ImageJ software (http://rsb.info.nih.gov/ij/)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4584467&req=5

Fig4: DENV-2 induces the expression of IFN-III in C33-A cells. C33-A cells were treated with IFN-λ1 (35 ng/ml) infected with DENV-2 (MOI = 0.1) or pre-treated with IFN-λ1 and subsequently infected with DENV-2. Forty-eight h post-infection, total cellular RNA was isolated and used in end-point RT-PCR for qualitative determination of the IFN-λ1, IFN-λ2, IFN-λ3 genes, using HPRT as an endogenous control gene. a Results of RT-PCR amplification of mock-infected and the three experimental conditions are shown. b Extracts of total protein from each condition were used for Western blotting to determine the presence of IFN-λ1 and IFN-λ2 proteins. Actin was the loading control. A semi quantitative analysis of detected bands normalized to actin was performed using ImageJ software (http://rsb.info.nih.gov/ij/)
Mentions: To determine whether DENV-2 induces the expression of all subtypes of IFN-λs, four treatments were compared: Mock infection, IFN-λ1 treatment only (35 ng/ml), DENV-infection only (MOI = 0.1), and IFN-λ1 treatment followed by DENV infection. Mock-infected cells had no RT-PCR product for any of the IFN-λ isoforms (Fig. 4a). In contrast, IFN-λ1, IFN-λ2 and IFN-λ3 transcripts were demonstrated by end-point RT-PCR under the other three conditions studied (Fig. 4a).Fig. 4

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus