Limits...
Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus

Membrane receptor expression IL28R in C33-A cells. The presence of IL28R1 was determined in C33-A cells: (a, b) Mock-infected. (c, d) DENV-2 infected (MOI = 0.1). e, f Treated with IFN-λ1 (35 ng/ml). Immunofluorescence was detected with anti-IL28R1 and CFL647-conjugated secondary antibody and observed by fluorescent microscopy (40X magnification). g Fluorescence intensities were determined by analysis of three different fields by randomly counting 50 cells using the image analysis software EZ-C1 v.2.3. *p < 0.05, ***p < 0.001. Nuclei were stained with the green fluorescent dye Sybr-14. Bars = 30 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4584467&req=5

Fig3: Membrane receptor expression IL28R in C33-A cells. The presence of IL28R1 was determined in C33-A cells: (a, b) Mock-infected. (c, d) DENV-2 infected (MOI = 0.1). e, f Treated with IFN-λ1 (35 ng/ml). Immunofluorescence was detected with anti-IL28R1 and CFL647-conjugated secondary antibody and observed by fluorescent microscopy (40X magnification). g Fluorescence intensities were determined by analysis of three different fields by randomly counting 50 cells using the image analysis software EZ-C1 v.2.3. *p < 0.05, ***p < 0.001. Nuclei were stained with the green fluorescent dye Sybr-14. Bars = 30 μm

Mentions: To analyze the effect of DENV-2 infection on signal transduction initiated by IFN-III, the tissue-specific IL28R1 subunit of type-III interferon receptor was quantified on C33-A cells, by immunofluorescence. Figure 3b shows the presence of IL28R1 at significant levels on the cell membrane of non-infected cells (red signal). Expression of this subunit increased 76 % in the presence of IFN-λ1 (Fig. 3f) and 61 % during DENV-2 infection (Fig. 3d) with respect to untreated cells (quantification shown in Fig. 3g). Thus, DENV-2 and IFN-λ1 upregulate to a similar extent the expression of the IL28R1 subunit of the IFN-III receptor, suggesting that differential effects between these two stimuli may lie at other points in the IFN-λ signal transduction pathway.Fig. 3


Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

Membrane receptor expression IL28R in C33-A cells. The presence of IL28R1 was determined in C33-A cells: (a, b) Mock-infected. (c, d) DENV-2 infected (MOI = 0.1). e, f Treated with IFN-λ1 (35 ng/ml). Immunofluorescence was detected with anti-IL28R1 and CFL647-conjugated secondary antibody and observed by fluorescent microscopy (40X magnification). g Fluorescence intensities were determined by analysis of three different fields by randomly counting 50 cells using the image analysis software EZ-C1 v.2.3. *p < 0.05, ***p < 0.001. Nuclei were stained with the green fluorescent dye Sybr-14. Bars = 30 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4584467&req=5

Fig3: Membrane receptor expression IL28R in C33-A cells. The presence of IL28R1 was determined in C33-A cells: (a, b) Mock-infected. (c, d) DENV-2 infected (MOI = 0.1). e, f Treated with IFN-λ1 (35 ng/ml). Immunofluorescence was detected with anti-IL28R1 and CFL647-conjugated secondary antibody and observed by fluorescent microscopy (40X magnification). g Fluorescence intensities were determined by analysis of three different fields by randomly counting 50 cells using the image analysis software EZ-C1 v.2.3. *p < 0.05, ***p < 0.001. Nuclei were stained with the green fluorescent dye Sybr-14. Bars = 30 μm
Mentions: To analyze the effect of DENV-2 infection on signal transduction initiated by IFN-III, the tissue-specific IL28R1 subunit of type-III interferon receptor was quantified on C33-A cells, by immunofluorescence. Figure 3b shows the presence of IL28R1 at significant levels on the cell membrane of non-infected cells (red signal). Expression of this subunit increased 76 % in the presence of IFN-λ1 (Fig. 3f) and 61 % during DENV-2 infection (Fig. 3d) with respect to untreated cells (quantification shown in Fig. 3g). Thus, DENV-2 and IFN-λ1 upregulate to a similar extent the expression of the IL28R1 subunit of the IFN-III receptor, suggesting that differential effects between these two stimuli may lie at other points in the IFN-λ signal transduction pathway.Fig. 3

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus