Limits...
Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus

Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4584467&req=5

Fig2: Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm

Mentions: To study the response of IFN-λ during DENV-2 infection, we selected the epithelial cell line C33-A. Because DENV infection has not been reported infecting C33-A cells, we performed initial assays and analyzed whether these cells are permissive to infection. After DENV-2 replication in C33-A cells, viral titers in the supernatants at 48 h post-infection were quantified by lytic plaque assays in BHK-21 cells, meaning that infectious viral progeny was released from C33-A cells. Immunofluorescence analysis using a specific antibody against DENV pr-M protein (Fig. 2) confirmed that C33-A cells are permissive to DENV-2 infection. Specific fluorescence was found in the cytoplasm of infected cells. With these data we propose the C33-A cell line as a novel epithelial model to analyze the relationship between DENV-2 infection and IFN-λ.Fig. 2


Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4584467&req=5

Fig2: Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm
Mentions: To study the response of IFN-λ during DENV-2 infection, we selected the epithelial cell line C33-A. Because DENV infection has not been reported infecting C33-A cells, we performed initial assays and analyzed whether these cells are permissive to infection. After DENV-2 replication in C33-A cells, viral titers in the supernatants at 48 h post-infection were quantified by lytic plaque assays in BHK-21 cells, meaning that infectious viral progeny was released from C33-A cells. Immunofluorescence analysis using a specific antibody against DENV pr-M protein (Fig. 2) confirmed that C33-A cells are permissive to DENV-2 infection. Specific fluorescence was found in the cytoplasm of infected cells. With these data we propose the C33-A cell line as a novel epithelial model to analyze the relationship between DENV-2 infection and IFN-λ.Fig. 2

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus