Limits...
Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus

Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4584467&req=5

Fig2: Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm

Mentions: To study the response of IFN-λ during DENV-2 infection, we selected the epithelial cell line C33-A. Because DENV infection has not been reported infecting C33-A cells, we performed initial assays and analyzed whether these cells are permissive to infection. After DENV-2 replication in C33-A cells, viral titers in the supernatants at 48 h post-infection were quantified by lytic plaque assays in BHK-21 cells, meaning that infectious viral progeny was released from C33-A cells. Immunofluorescence analysis using a specific antibody against DENV pr-M protein (Fig. 2) confirmed that C33-A cells are permissive to DENV-2 infection. Specific fluorescence was found in the cytoplasm of infected cells. With these data we propose the C33-A cell line as a novel epithelial model to analyze the relationship between DENV-2 infection and IFN-λ.Fig. 2


Interferon lambda inhibits dengue virus replication in epithelial cells.

Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G - Virol. J. (2015)

Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4584467&req=5

Fig2: Permissivity of C33-A cells to DENV-2 infection. Cells were infected with dengue virus (MOI = 0.1) for 2 h, maintained for 24 h, washed, and fixed with methanol-acetone. The virus was detected using antibodies against the viral pr-M protein and a Texas Red secondary antibody and observed with fluorescence microscopy. a–c DENV-2-infected cells. d–f Mock-infected cells. a, d White light. b, e Fluorescence, (c, f) Merged images. Bars = 30 μm
Mentions: To study the response of IFN-λ during DENV-2 infection, we selected the epithelial cell line C33-A. Because DENV infection has not been reported infecting C33-A cells, we performed initial assays and analyzed whether these cells are permissive to infection. After DENV-2 replication in C33-A cells, viral titers in the supernatants at 48 h post-infection were quantified by lytic plaque assays in BHK-21 cells, meaning that infectious viral progeny was released from C33-A cells. Immunofluorescence analysis using a specific antibody against DENV pr-M protein (Fig. 2) confirmed that C33-A cells are permissive to DENV-2 infection. Specific fluorescence was found in the cytoplasm of infected cells. With these data we propose the C33-A cell line as a novel epithelial model to analyze the relationship between DENV-2 infection and IFN-λ.Fig. 2

Bottom Line: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors.IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro.The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression.

View Article: PubMed Central - PubMed

Affiliation: Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México. hk.palma@gmail.com.

ABSTRACT

Background: In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection.

Methods: Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR.

Results: We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression.

Conclusions: Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

No MeSH data available.


Related in: MedlinePlus