Limits...
Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.

Li X, Wang B, Wang X, Zhou X, Chen Z, He C, Yu Z, Wu Y - Nanoscale Res Lett (2015)

Bottom Line: Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM).The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO.The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China. wangbin@hlju.edu.cn.

ABSTRACT
Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

No MeSH data available.


Related in: MedlinePlus

Response of the MPc/rGO hybrid sensors to 100 ppm NH3 over long time storage
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4582035&req=5

Fig9: Response of the MPc/rGO hybrid sensors to 100 ppm NH3 over long time storage

Mentions: Stability is also one of the most important characteristics for the sensors. To investigate the time stability of the MPc/rGO hybrid sensors, the sensors were stored in air for subsequent sensing property tests to 100 ppm NH3 after the first measurement. The sensors remain the original response and with changes less than 5 % after 30 days (Fig. 9), which indicates that the sensors have a satisfying long-term stability. Moreover, the response changes of repeatability of sensors fabrication were also observed. The response changes of two different MPc/rGO hybrid sensors to 100 ppm NH3 over long time storage were also measured. The results indicate the response changes of two different MPc/rGO hybrid sensors are less than 5 % within 30 days. Furthermore, Fig. 7g shows the resistance of the MPc/rGO hybrid sensors as a function of time during exposure to 100 ppm of NH3 (five cycles). The result shows that the sensors have good repeatability and no obvious degradation after consecutive measurements. All results indicate that the sensors have an excellent reproducibility, repeatability, and satisfying long-term stability.Fig. 9


Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.

Li X, Wang B, Wang X, Zhou X, Chen Z, He C, Yu Z, Wu Y - Nanoscale Res Lett (2015)

Response of the MPc/rGO hybrid sensors to 100 ppm NH3 over long time storage
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4582035&req=5

Fig9: Response of the MPc/rGO hybrid sensors to 100 ppm NH3 over long time storage
Mentions: Stability is also one of the most important characteristics for the sensors. To investigate the time stability of the MPc/rGO hybrid sensors, the sensors were stored in air for subsequent sensing property tests to 100 ppm NH3 after the first measurement. The sensors remain the original response and with changes less than 5 % after 30 days (Fig. 9), which indicates that the sensors have a satisfying long-term stability. Moreover, the response changes of repeatability of sensors fabrication were also observed. The response changes of two different MPc/rGO hybrid sensors to 100 ppm NH3 over long time storage were also measured. The results indicate the response changes of two different MPc/rGO hybrid sensors are less than 5 % within 30 days. Furthermore, Fig. 7g shows the resistance of the MPc/rGO hybrid sensors as a function of time during exposure to 100 ppm of NH3 (five cycles). The result shows that the sensors have good repeatability and no obvious degradation after consecutive measurements. All results indicate that the sensors have an excellent reproducibility, repeatability, and satisfying long-term stability.Fig. 9

Bottom Line: Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM).The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO.The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China. wangbin@hlju.edu.cn.

ABSTRACT
Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

No MeSH data available.


Related in: MedlinePlus