Limits...
Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.

Li X, Wang B, Wang X, Zhou X, Chen Z, He C, Yu Z, Wu Y - Nanoscale Res Lett (2015)

Bottom Line: Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM).The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO.The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China. wangbin@hlju.edu.cn.

ABSTRACT
Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

No MeSH data available.


Related in: MedlinePlus

a XPS analysis of (1) RGO, (2) NiPc/rGO, (3) CuPc/rGO, and (4) PbPc/rGO hybrids survey spectra; b Cu 2p XPS spectra of CuPc and CuPc/rGO hybrids, c Ni 2p XPS spectra of NiPc and NiPc/rGO hybrids, d Pb 4f XPS spectra of PbPc and PbPc/rGO hybrids; N 1s XPS spectra of NiPc/rGO (e), CuPc/rGO (f), and PbPc/rGO hybrids (g)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4582035&req=5

Fig6: a XPS analysis of (1) RGO, (2) NiPc/rGO, (3) CuPc/rGO, and (4) PbPc/rGO hybrids survey spectra; b Cu 2p XPS spectra of CuPc and CuPc/rGO hybrids, c Ni 2p XPS spectra of NiPc and NiPc/rGO hybrids, d Pb 4f XPS spectra of PbPc and PbPc/rGO hybrids; N 1s XPS spectra of NiPc/rGO (e), CuPc/rGO (f), and PbPc/rGO hybrids (g)

Mentions: XPS was also employed to prove the successful attachment of MPc molecules onto the surface of the rGO sheets and demonstrate the charge transfer interaction between MPc molecules and rGO sheets. In the spectra of the hybrids (shown in Fig. 6e–g), the N 1s peaks of MPc and MPc/rGO hybrids consist of two split peaks, which are distributed to two groups of four nitrogen atoms in different chemical environments in the molecules, suggesting the MPc/rGO hybrids have been successfully prepared. As shown in Fig. 6a, all of the MPc/rGO hybrids exhibit the characteristic peaks of C 1s, N 1s, and O 1s. As expected, the appearance of the Cu 2p (934.9 eV), Ni 2p (855.6 eV), and Pb 4f (138.6 eV) peaks corresponding to the spectrum of CuPc/rGO, NiPc/rGO, and PbPc/rGO hybrids further suggests the successful attachment of MPc molecules onto the surface of the rGO sheets. Figure 6b–d show that the Cu 2p peak of the CuPc/rGO hybrid (934.9 eV) upshifts by 0.4 eV compared to that of pure CuPc (Cu 2p peak at 934.5 eV); the Ni 2p peak of the NiPc/rGO hybrid (855.6 eV) upshifts by 0.1 eV compared to that of pure NiPc (Ni 2p peak at 855.5 eV); the Pb 4f peak of the PbPc/rGO hybrid (138.6 eV) upshifts by 0.8 eV compared to that of pure PbPc (Pb 4f peak at 137.8 eV), which also agree with the charge transfer phenomena of the N 1s XPS peaks of the MPc/rGO hybrids shift to higher binding energy compared to that of pure MPc (shown in Fig. 6e–g). These phenomena indicate the charge transfer from MPc molecules to rGO sheets in the hybrids, because the binding energy is correlated to the electron density around the nucleus (the lower the electronic density is, the higher the binding energy). Overall, from the XPS spectra (Fig. 6), we can conclude that MPc molecules were successfully attached onto the surface of the rGO sheets and the electron transfer system was formed from MPc to rGO, which is consistent with the reported electron transfer phenomenon [21].Fig. 6


Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.

Li X, Wang B, Wang X, Zhou X, Chen Z, He C, Yu Z, Wu Y - Nanoscale Res Lett (2015)

a XPS analysis of (1) RGO, (2) NiPc/rGO, (3) CuPc/rGO, and (4) PbPc/rGO hybrids survey spectra; b Cu 2p XPS spectra of CuPc and CuPc/rGO hybrids, c Ni 2p XPS spectra of NiPc and NiPc/rGO hybrids, d Pb 4f XPS spectra of PbPc and PbPc/rGO hybrids; N 1s XPS spectra of NiPc/rGO (e), CuPc/rGO (f), and PbPc/rGO hybrids (g)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4582035&req=5

Fig6: a XPS analysis of (1) RGO, (2) NiPc/rGO, (3) CuPc/rGO, and (4) PbPc/rGO hybrids survey spectra; b Cu 2p XPS spectra of CuPc and CuPc/rGO hybrids, c Ni 2p XPS spectra of NiPc and NiPc/rGO hybrids, d Pb 4f XPS spectra of PbPc and PbPc/rGO hybrids; N 1s XPS spectra of NiPc/rGO (e), CuPc/rGO (f), and PbPc/rGO hybrids (g)
Mentions: XPS was also employed to prove the successful attachment of MPc molecules onto the surface of the rGO sheets and demonstrate the charge transfer interaction between MPc molecules and rGO sheets. In the spectra of the hybrids (shown in Fig. 6e–g), the N 1s peaks of MPc and MPc/rGO hybrids consist of two split peaks, which are distributed to two groups of four nitrogen atoms in different chemical environments in the molecules, suggesting the MPc/rGO hybrids have been successfully prepared. As shown in Fig. 6a, all of the MPc/rGO hybrids exhibit the characteristic peaks of C 1s, N 1s, and O 1s. As expected, the appearance of the Cu 2p (934.9 eV), Ni 2p (855.6 eV), and Pb 4f (138.6 eV) peaks corresponding to the spectrum of CuPc/rGO, NiPc/rGO, and PbPc/rGO hybrids further suggests the successful attachment of MPc molecules onto the surface of the rGO sheets. Figure 6b–d show that the Cu 2p peak of the CuPc/rGO hybrid (934.9 eV) upshifts by 0.4 eV compared to that of pure CuPc (Cu 2p peak at 934.5 eV); the Ni 2p peak of the NiPc/rGO hybrid (855.6 eV) upshifts by 0.1 eV compared to that of pure NiPc (Ni 2p peak at 855.5 eV); the Pb 4f peak of the PbPc/rGO hybrid (138.6 eV) upshifts by 0.8 eV compared to that of pure PbPc (Pb 4f peak at 137.8 eV), which also agree with the charge transfer phenomena of the N 1s XPS peaks of the MPc/rGO hybrids shift to higher binding energy compared to that of pure MPc (shown in Fig. 6e–g). These phenomena indicate the charge transfer from MPc molecules to rGO sheets in the hybrids, because the binding energy is correlated to the electron density around the nucleus (the lower the electronic density is, the higher the binding energy). Overall, from the XPS spectra (Fig. 6), we can conclude that MPc molecules were successfully attached onto the surface of the rGO sheets and the electron transfer system was formed from MPc to rGO, which is consistent with the reported electron transfer phenomenon [21].Fig. 6

Bottom Line: Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM).The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO.The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China. wangbin@hlju.edu.cn.

ABSTRACT
Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

No MeSH data available.


Related in: MedlinePlus