Limits...
Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.

Li X, Wang B, Wang X, Zhou X, Chen Z, He C, Yu Z, Wu Y - Nanoscale Res Lett (2015)

Bottom Line: Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM).The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO.The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China. wangbin@hlju.edu.cn.

ABSTRACT
Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

No MeSH data available.


Related in: MedlinePlus

TEM images of the MPc/rGO hybrids: a NiPc/rGO, b CuPc/rGO, c PbPc/rGO. AFM images of the MPc/rGO hybrids: d NiPc/rGO, e CuPc/rGO, f PbPc/rGO, with the inset showing height profiles of the sheets
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4582035&req=5

Fig2: TEM images of the MPc/rGO hybrids: a NiPc/rGO, b CuPc/rGO, c PbPc/rGO. AFM images of the MPc/rGO hybrids: d NiPc/rGO, e CuPc/rGO, f PbPc/rGO, with the inset showing height profiles of the sheets

Mentions: The morphology of MPc/rGO hybrids was analyzed by TEM, as shown in Fig. 2a–c. It was obvious that the MPc/rGO sheets have folds and rolls on its surfaces and formed a blurry rough layer, which indicates that MPc was loaded on surface of rGO. Moreover, the sectional TEM analyses of MPc/rGO hybrids unfold the number of layers of the rGO, which are about ten layers. Figure 2d–f is the atomic force microscope images and section analysis of MPc/rGO deposited on a flat silicon substrate. The AFM images provide detailed information about thin layer of MPc/rGO hybrids sheets. The inset in Fig. 2d–f shows the topographic height profiles for MPc/rGO hybrid sheets. The cross-sectional analysis indicates the thickness of the MPc/rGO hybrids sheets are about 3 nm, which implies also that the hybrid was comprised of multilayered rGO. The thin structure of the MPc/rGO hybrids sheets can increase the absorbed areas, which is very useful for the gas-sensing process.Fig. 2


Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives.

Li X, Wang B, Wang X, Zhou X, Chen Z, He C, Yu Z, Wu Y - Nanoscale Res Lett (2015)

TEM images of the MPc/rGO hybrids: a NiPc/rGO, b CuPc/rGO, c PbPc/rGO. AFM images of the MPc/rGO hybrids: d NiPc/rGO, e CuPc/rGO, f PbPc/rGO, with the inset showing height profiles of the sheets
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4582035&req=5

Fig2: TEM images of the MPc/rGO hybrids: a NiPc/rGO, b CuPc/rGO, c PbPc/rGO. AFM images of the MPc/rGO hybrids: d NiPc/rGO, e CuPc/rGO, f PbPc/rGO, with the inset showing height profiles of the sheets
Mentions: The morphology of MPc/rGO hybrids was analyzed by TEM, as shown in Fig. 2a–c. It was obvious that the MPc/rGO sheets have folds and rolls on its surfaces and formed a blurry rough layer, which indicates that MPc was loaded on surface of rGO. Moreover, the sectional TEM analyses of MPc/rGO hybrids unfold the number of layers of the rGO, which are about ten layers. Figure 2d–f is the atomic force microscope images and section analysis of MPc/rGO deposited on a flat silicon substrate. The AFM images provide detailed information about thin layer of MPc/rGO hybrids sheets. The inset in Fig. 2d–f shows the topographic height profiles for MPc/rGO hybrid sheets. The cross-sectional analysis indicates the thickness of the MPc/rGO hybrids sheets are about 3 nm, which implies also that the hybrid was comprised of multilayered rGO. The thin structure of the MPc/rGO hybrids sheets can increase the absorbed areas, which is very useful for the gas-sensing process.Fig. 2

Bottom Line: Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM).The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO.The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China. wangbin@hlju.edu.cn.

ABSTRACT
Three kinds of novel hybrid materials were prepared by noncovalent functionalized reduced graphene oxide (rGO) with tetra-α-iso-pentyloxyphthalocyanine copper (CuPc), tetra-α-iso-pentyloxyphthalocyanine nickel (NiPc) and tetra-α-iso-pentyloxyphthalocyanine lead (PbPc) and characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), Raman spectra, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and atomic force microscope (AFM). The as-synthesized MPc/rGO hybrids show excellent NH3 gas-sensing performance with high response value and fast recovery time compared with bare rGO. The enhancement of the sensing response is mainly attributed to the synergism of gas adsorption of MPc to NH3 gas and conducting network of rGO with greater electron transfer efficiency. Strategies for combining the good properties of rGO and MPc derivatives will open new opportunities for preparing and designing highly efficient rGO chemiresistive gas-sensing hybrid materials for potential applications in gas sensor field.

No MeSH data available.


Related in: MedlinePlus