Limits...
Effect of DNA Methylation in Various Diseases and the Probable Protective Role of Nutrition: A Mini-Review.

Kandi V, Vadakedath S - Cureus (2015)

Bottom Line: These regions are more susceptible to DNA methylations.Nutritional supplementation of folic acid and methionine in utero and in adults decreased epigenetic modifications due to its role in DNA metabolism (one carbon metabolism). Thus, in utero and adult supplementation of folic acid and methionine may reduce DNA methylation.This review attempts to highlight the process of DNA methylation, its effect on various diseases, and the probable protective role of nutrition.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Microbiology, Prathima Institute of Medical Sciences.

ABSTRACT
DNA methylation, a process of adding a methyl group to DNA done by a DNA methyltransferase is a heritable (epigenetic) alteration leading to cancer, atherosclerosis, nervous disorders (Imprinting disorders), and cardiovascular diseases. The role of nutrition in DNA methylation is revealed by identification of methyl variable positions (MVP) on DNA. These regions are more susceptible to DNA methylations. Nutritional supplementation of folic acid and methionine in utero and in adults decreased epigenetic modifications due to its role in DNA metabolism (one carbon metabolism). Thus, in utero and adult supplementation of folic acid and methionine may reduce DNA methylation. This review attempts to highlight the process of DNA methylation, its effect on various diseases, and the probable protective role of nutrition.

No MeSH data available.


Related in: MedlinePlus

Reactions contributing to DNA methylation
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4582005&req=5

FIG1: Reactions contributing to DNA methylation

Mentions: DNA methylation is a genetic process that is extensively being researched among mammals, including humans. The epigenetic modifications in DNA contribute to the regulation of gene expression. DNA methylation is associated with histone modifications, which play a key role in regulating the functioning of the DNA by altering chromatin structure. The information imprinted on the genes is epigenetically marked during gametogenesis and is expressed/transferred to the offspring's familially. The process of genetic transfer may be influenced by a phenomenon called as DNA methylation. The significance of DNA methylation and its role in the development of various diseases/processes that include formation of tumours, atherosclerosis, cardiovascular diseases, imprinting disorders, and ageing is least understood. Considering the fact that DNA methylation is a reversible process, we have attempted to highlight the effect of DNA methylation in various diseases and the beneficial role of nutrition in this mini review. The process of addition of the methyl group to DNA is DNA methylation. The major donor of the methyl group is s-adenosylmethionine (SAM) formed from methionine, and the methylation reaction is done by the action of the enzyme DNA methyltransferase (DMT) as shown in Figure 1 [1].


Effect of DNA Methylation in Various Diseases and the Probable Protective Role of Nutrition: A Mini-Review.

Kandi V, Vadakedath S - Cureus (2015)

Reactions contributing to DNA methylation
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4582005&req=5

FIG1: Reactions contributing to DNA methylation
Mentions: DNA methylation is a genetic process that is extensively being researched among mammals, including humans. The epigenetic modifications in DNA contribute to the regulation of gene expression. DNA methylation is associated with histone modifications, which play a key role in regulating the functioning of the DNA by altering chromatin structure. The information imprinted on the genes is epigenetically marked during gametogenesis and is expressed/transferred to the offspring's familially. The process of genetic transfer may be influenced by a phenomenon called as DNA methylation. The significance of DNA methylation and its role in the development of various diseases/processes that include formation of tumours, atherosclerosis, cardiovascular diseases, imprinting disorders, and ageing is least understood. Considering the fact that DNA methylation is a reversible process, we have attempted to highlight the effect of DNA methylation in various diseases and the beneficial role of nutrition in this mini review. The process of addition of the methyl group to DNA is DNA methylation. The major donor of the methyl group is s-adenosylmethionine (SAM) formed from methionine, and the methylation reaction is done by the action of the enzyme DNA methyltransferase (DMT) as shown in Figure 1 [1].

Bottom Line: These regions are more susceptible to DNA methylations.Nutritional supplementation of folic acid and methionine in utero and in adults decreased epigenetic modifications due to its role in DNA metabolism (one carbon metabolism). Thus, in utero and adult supplementation of folic acid and methionine may reduce DNA methylation.This review attempts to highlight the process of DNA methylation, its effect on various diseases, and the probable protective role of nutrition.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Microbiology, Prathima Institute of Medical Sciences.

ABSTRACT
DNA methylation, a process of adding a methyl group to DNA done by a DNA methyltransferase is a heritable (epigenetic) alteration leading to cancer, atherosclerosis, nervous disorders (Imprinting disorders), and cardiovascular diseases. The role of nutrition in DNA methylation is revealed by identification of methyl variable positions (MVP) on DNA. These regions are more susceptible to DNA methylations. Nutritional supplementation of folic acid and methionine in utero and in adults decreased epigenetic modifications due to its role in DNA metabolism (one carbon metabolism). Thus, in utero and adult supplementation of folic acid and methionine may reduce DNA methylation. This review attempts to highlight the process of DNA methylation, its effect on various diseases, and the probable protective role of nutrition.

No MeSH data available.


Related in: MedlinePlus