Limits...
A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.

Kopp CW, Cleland EE - PLoS ONE (2015)

Bottom Line: Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology.Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush.This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.

View Article: PubMed Central - PubMed

Affiliation: The Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada.

ABSTRACT
Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California's White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.

No MeSH data available.


First flower date (A, D), peak flower date (B, E) and peak flowers produced (C, F) for Trifolium andersonii at 3700 m (A-C) and 3100 m (D-F).Shade and open treatments contained no sagebrush and shade treatments were not warmed.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4581864&req=5

pone.0139029.g001: First flower date (A, D), peak flower date (B, E) and peak flowers produced (C, F) for Trifolium andersonii at 3700 m (A-C) and 3100 m (D-F).Shade and open treatments contained no sagebrush and shade treatments were not warmed.

Mentions: As expected, T. andersonii flowered earlier in response to warming (F1,23 = 9.58, p<0.01). The presence of sagebrush, however, delayed first flowering date (F1,23 = 10.3, p<0.01), and modified the phenological response of T. andersonii to warming (warming*sagebrush F1,23 = 4.63, p = 0.04). In the absence of sagebrush, warming advanced flowering phenology of T. andersonii by -4.5 days per °C warming at 3100 m (-2.1 days per °C of warming at 3700 m; Fig 1; Table 1; S1a Table). This magnitude of phenological advancement is consistent with, and even exceeds, other passive warming experiments in arctic and alpine systems that have found advances in the onset of flowering dates in the range of -1.9–3.3 days per °C of warming [29]. The presence of sagebrush, however, delayed first flowering of T. andersonii in both warmed and unwarmed plots compared to controls (+1.1 days per °C at 3100 m and +2.6 days at 3700 m; Fig 1; Table 1; S1a Table), demonstrating that species interactions can influence phenological responses to climate change. There was a similar pattern for peak flowering dates, which were significantly advanced in warmed open and warmed sagebrush treatments at both elevations (F2,26 = 31.6, p<0.01; Fig 1; S1a Table).


A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.

Kopp CW, Cleland EE - PLoS ONE (2015)

First flower date (A, D), peak flower date (B, E) and peak flowers produced (C, F) for Trifolium andersonii at 3700 m (A-C) and 3100 m (D-F).Shade and open treatments contained no sagebrush and shade treatments were not warmed.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4581864&req=5

pone.0139029.g001: First flower date (A, D), peak flower date (B, E) and peak flowers produced (C, F) for Trifolium andersonii at 3700 m (A-C) and 3100 m (D-F).Shade and open treatments contained no sagebrush and shade treatments were not warmed.
Mentions: As expected, T. andersonii flowered earlier in response to warming (F1,23 = 9.58, p<0.01). The presence of sagebrush, however, delayed first flowering date (F1,23 = 10.3, p<0.01), and modified the phenological response of T. andersonii to warming (warming*sagebrush F1,23 = 4.63, p = 0.04). In the absence of sagebrush, warming advanced flowering phenology of T. andersonii by -4.5 days per °C warming at 3100 m (-2.1 days per °C of warming at 3700 m; Fig 1; Table 1; S1a Table). This magnitude of phenological advancement is consistent with, and even exceeds, other passive warming experiments in arctic and alpine systems that have found advances in the onset of flowering dates in the range of -1.9–3.3 days per °C of warming [29]. The presence of sagebrush, however, delayed first flowering of T. andersonii in both warmed and unwarmed plots compared to controls (+1.1 days per °C at 3100 m and +2.6 days at 3700 m; Fig 1; Table 1; S1a Table), demonstrating that species interactions can influence phenological responses to climate change. There was a similar pattern for peak flowering dates, which were significantly advanced in warmed open and warmed sagebrush treatments at both elevations (F2,26 = 31.6, p<0.01; Fig 1; S1a Table).

Bottom Line: Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology.Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush.This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.

View Article: PubMed Central - PubMed

Affiliation: The Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada.

ABSTRACT
Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California's White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology.

No MeSH data available.