Limits...
Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity.

López-Aguirre C, Pérez-Torres J, Wilson LA - PeerJ (2015)

Bottom Line: Cranial modularity varied between species whereas mandibular modularity did not.Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species.The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Biological, Earth, and Environmental Sciences, University of New South Wales , Sydney , Australia ; Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana , Bogotá , Colombia.

ABSTRACT
Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.

No MeSH data available.


Patterns recovered for cranial modularity for C. brevicauda (A), C. castanea (B), and C. perspicillata (C), showing the neurocranium (grey-solid lines) and the splachnocranium (black-dotted lines).Thicker lines and dots highlight the region where modularity varies between species.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4581772&req=5

fig-6: Patterns recovered for cranial modularity for C. brevicauda (A), C. castanea (B), and C. perspicillata (C), showing the neurocranium (grey-solid lines) and the splachnocranium (black-dotted lines).Thicker lines and dots highlight the region where modularity varies between species.

Mentions: Partitions recovered for mandibular modularity had the same structure for all species. Similarly, for cranial modularity, the same general partition pattern, dividing the cranium into two modules representing the neurocranium and the splachnocranium, was recovered. However, the structure of these partitions varied between species, each species having different modularity patterns, and such differences being present in the sphenoidal section of the basicranium (Figs. 6A–6C). Cranial modularity results for C. brevicauda showed that the neurocranium module comprises the zygomatic process of the temporal bone (landmarks 3–10), while the splachnocranium module comprises the palatine (landmarks 9–10) and vomer bones (landmarks 3–9) (Fig. 6A). For C. perspicillata the neurocranium module comprises the zygomatic process of the temporal bone and the vomer and the splachnocranium module comprises the palatine (Fig. 6C). Carollia castanea showed the most distinct modularity patterns where the neurocranium module extends anteriorly covering the zygomatic process of the temporal and the posterior section of the palatine, while the splachnocranium module extends posteriorly covering the vomer (Fig. 6B). For all species the first three dimensions of the PLS explained around 80% (C. brevicauda 78.32%, C. castanea 84.84% and C. perspicillata 76.91%) of the cranial-mandibular morphological integration, R values were always positive (ranging from 0.37 to 0.65), and the coefficient of determination (r2) values corroborated the significance of the results (Table 3).


Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity.

López-Aguirre C, Pérez-Torres J, Wilson LA - PeerJ (2015)

Patterns recovered for cranial modularity for C. brevicauda (A), C. castanea (B), and C. perspicillata (C), showing the neurocranium (grey-solid lines) and the splachnocranium (black-dotted lines).Thicker lines and dots highlight the region where modularity varies between species.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4581772&req=5

fig-6: Patterns recovered for cranial modularity for C. brevicauda (A), C. castanea (B), and C. perspicillata (C), showing the neurocranium (grey-solid lines) and the splachnocranium (black-dotted lines).Thicker lines and dots highlight the region where modularity varies between species.
Mentions: Partitions recovered for mandibular modularity had the same structure for all species. Similarly, for cranial modularity, the same general partition pattern, dividing the cranium into two modules representing the neurocranium and the splachnocranium, was recovered. However, the structure of these partitions varied between species, each species having different modularity patterns, and such differences being present in the sphenoidal section of the basicranium (Figs. 6A–6C). Cranial modularity results for C. brevicauda showed that the neurocranium module comprises the zygomatic process of the temporal bone (landmarks 3–10), while the splachnocranium module comprises the palatine (landmarks 9–10) and vomer bones (landmarks 3–9) (Fig. 6A). For C. perspicillata the neurocranium module comprises the zygomatic process of the temporal bone and the vomer and the splachnocranium module comprises the palatine (Fig. 6C). Carollia castanea showed the most distinct modularity patterns where the neurocranium module extends anteriorly covering the zygomatic process of the temporal and the posterior section of the palatine, while the splachnocranium module extends posteriorly covering the vomer (Fig. 6B). For all species the first three dimensions of the PLS explained around 80% (C. brevicauda 78.32%, C. castanea 84.84% and C. perspicillata 76.91%) of the cranial-mandibular morphological integration, R values were always positive (ranging from 0.37 to 0.65), and the coefficient of determination (r2) values corroborated the significance of the results (Table 3).

Bottom Line: Cranial modularity varied between species whereas mandibular modularity did not.Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species.The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Biological, Earth, and Environmental Sciences, University of New South Wales , Sydney , Australia ; Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana , Bogotá , Colombia.

ABSTRACT
Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.

No MeSH data available.