Limits...
Anti-Arthritic Effect of Chebulanin on Collagen-Induced Arthritis in Mice.

Zhao Y, Liu F, Liu Y, Zhou D, Dai Q, Liu S - PLoS ONE (2015)

Bottom Line: To date, there are no effective therapies to slow the progress of this degenerative condition.Furthermore, micro-CT analysis revealed that chebulanin induced a dose-dependent reduction in cartilage destruction and bone erosion.Therefore, chebulanin is a strong therapeutic alternative for the treatment of RA.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China.

ABSTRACT
Rheumatoid arthritis is a chronic degenerative autoimmune disease characterized by persistent inflammation of synovial membranes, which leads to cartilage destruction and bone erosion. To date, there are no effective therapies to slow the progress of this degenerative condition. Here, we evaluate the anti-arthritic effect of chebulanin, an abundant anti-inflammatory agent isolated from Terminalia chebula, in collagen induced arthritis in DBA/1 mice by intragastric administration. Arthritic severity was scored by performing histopathological evaluation of the joints and measuring the expression of inflammatory cytokines and relative enzymes by immunohistochemical staining. In parallel, bone destruction and erosion were confirmed by micro-CT. Our data revealed that chebulanin significantly improved the severity of arthritis. Specifically, the histopathological characteristics of the tissues were improved and expression of TNF-α, IL-6, MMP-3 and COX-2 in the paws and joints of the treated mice decreased in a dose-dependent manner compared with control mice. Furthermore, micro-CT analysis revealed that chebulanin induced a dose-dependent reduction in cartilage destruction and bone erosion. Taken together, our findings suggest that chebulanin suppresses the expression of inflammatory mediators and prevents cartilage destruction and bone erosion in mice. Therefore, chebulanin is a strong therapeutic alternative for the treatment of RA.

No MeSH data available.


Related in: MedlinePlus

Identification and isolation of chebulanin.A: ESI-MS chromatogram of chebulanin isolated from immature fruit of Terminalia Chebula. B: Chemical structure of chebulanin.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4581703&req=5

pone.0139052.g002: Identification and isolation of chebulanin.A: ESI-MS chromatogram of chebulanin isolated from immature fruit of Terminalia Chebula. B: Chemical structure of chebulanin.

Mentions: An off-white amorphous powder that showed a dark blue color with ferric chloride reagent was purified from the immature fruits of TC. The sample was identified as chebulanin using ESI-MS, 1H-NMR and 13C-NMR techniques. A molecular formula of C27H24O19 was calculated from the mass spectra [M- m/z 651] obtained using ESI-MS. The 1H-NMR and 13C-NMR data confirmed the identity of chebulanin (Fig 2) [17, 24]. The identity of the 1H-NMR (MeOH-d4, 600MHz) signals were as follows: δ7.12 (2H,s, galloyl H-2, 6), 6.36 (1H, brs, glucose H-1), 5.21 (1H,brs, glucose H-2), 4.81 (1H,brs, glucose H-3), 4.86 (1H,d, J = 7.6Hz, glucose H-4), 4.32 (1H,t, J = 6.5Hz, glucose H-5), 4.07 (1H,dd, J = 11.2,6.5Hz, glucose H-6a), 4.02 (1H,dd, J = 11.2,6.5Hz, glucose H-6b), 4.79 (1H,d, J = 7.2Hz,chebuloyl H-2’), 5.10 (1H,d, J = 7.2Hz,chebuloyl H-3’), 3.81 (1H,m, chebuloyl H-4’), 2.15 (2H,m, chebuloyl H-5’), 7.46 (1H,s, chebuloyl H-3”). The 13C-NMR (Acetone-d6, 600MHz) signals were assigned as follows: δ118.93 (galloyl C-1), 108.68 (galloyl C-2,6), 144.66 (galloyl C-3,5),138.10 (galloyl C-4), 163.88 (galloyl–COO-), 91.01 (glucose C-1), 72.23 (glucose C-2), 59.92 (glucose C-3), 70.10 (glucose C-4), 77.61 (glucose C-5), 61.41 (glucose C-6), 168.16 (chebuloyl C-1’), 65.12 (chebuloyl C-2’), 39.46 (chebuloyl C-3’), 37.96 (chebuloyl C-4’), 28.77 (chebuloyl C-5’), 171.47 (chebuloyl C-6’), 172.51 (chebuloyl C-7’), 115.38 (chebuloyl C-1”), 117.72 (chebuloyl C-2”), 114.46 (chebuloyl C-3”), 145.04 (chebuloyl C-4”), 137.97 (chebuloyl C-5”), 139.48 (chebuloyl C-6”), 164.48 (chebuloyl C-7”).


Anti-Arthritic Effect of Chebulanin on Collagen-Induced Arthritis in Mice.

Zhao Y, Liu F, Liu Y, Zhou D, Dai Q, Liu S - PLoS ONE (2015)

Identification and isolation of chebulanin.A: ESI-MS chromatogram of chebulanin isolated from immature fruit of Terminalia Chebula. B: Chemical structure of chebulanin.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4581703&req=5

pone.0139052.g002: Identification and isolation of chebulanin.A: ESI-MS chromatogram of chebulanin isolated from immature fruit of Terminalia Chebula. B: Chemical structure of chebulanin.
Mentions: An off-white amorphous powder that showed a dark blue color with ferric chloride reagent was purified from the immature fruits of TC. The sample was identified as chebulanin using ESI-MS, 1H-NMR and 13C-NMR techniques. A molecular formula of C27H24O19 was calculated from the mass spectra [M- m/z 651] obtained using ESI-MS. The 1H-NMR and 13C-NMR data confirmed the identity of chebulanin (Fig 2) [17, 24]. The identity of the 1H-NMR (MeOH-d4, 600MHz) signals were as follows: δ7.12 (2H,s, galloyl H-2, 6), 6.36 (1H, brs, glucose H-1), 5.21 (1H,brs, glucose H-2), 4.81 (1H,brs, glucose H-3), 4.86 (1H,d, J = 7.6Hz, glucose H-4), 4.32 (1H,t, J = 6.5Hz, glucose H-5), 4.07 (1H,dd, J = 11.2,6.5Hz, glucose H-6a), 4.02 (1H,dd, J = 11.2,6.5Hz, glucose H-6b), 4.79 (1H,d, J = 7.2Hz,chebuloyl H-2’), 5.10 (1H,d, J = 7.2Hz,chebuloyl H-3’), 3.81 (1H,m, chebuloyl H-4’), 2.15 (2H,m, chebuloyl H-5’), 7.46 (1H,s, chebuloyl H-3”). The 13C-NMR (Acetone-d6, 600MHz) signals were assigned as follows: δ118.93 (galloyl C-1), 108.68 (galloyl C-2,6), 144.66 (galloyl C-3,5),138.10 (galloyl C-4), 163.88 (galloyl–COO-), 91.01 (glucose C-1), 72.23 (glucose C-2), 59.92 (glucose C-3), 70.10 (glucose C-4), 77.61 (glucose C-5), 61.41 (glucose C-6), 168.16 (chebuloyl C-1’), 65.12 (chebuloyl C-2’), 39.46 (chebuloyl C-3’), 37.96 (chebuloyl C-4’), 28.77 (chebuloyl C-5’), 171.47 (chebuloyl C-6’), 172.51 (chebuloyl C-7’), 115.38 (chebuloyl C-1”), 117.72 (chebuloyl C-2”), 114.46 (chebuloyl C-3”), 145.04 (chebuloyl C-4”), 137.97 (chebuloyl C-5”), 139.48 (chebuloyl C-6”), 164.48 (chebuloyl C-7”).

Bottom Line: To date, there are no effective therapies to slow the progress of this degenerative condition.Furthermore, micro-CT analysis revealed that chebulanin induced a dose-dependent reduction in cartilage destruction and bone erosion.Therefore, chebulanin is a strong therapeutic alternative for the treatment of RA.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China.

ABSTRACT
Rheumatoid arthritis is a chronic degenerative autoimmune disease characterized by persistent inflammation of synovial membranes, which leads to cartilage destruction and bone erosion. To date, there are no effective therapies to slow the progress of this degenerative condition. Here, we evaluate the anti-arthritic effect of chebulanin, an abundant anti-inflammatory agent isolated from Terminalia chebula, in collagen induced arthritis in DBA/1 mice by intragastric administration. Arthritic severity was scored by performing histopathological evaluation of the joints and measuring the expression of inflammatory cytokines and relative enzymes by immunohistochemical staining. In parallel, bone destruction and erosion were confirmed by micro-CT. Our data revealed that chebulanin significantly improved the severity of arthritis. Specifically, the histopathological characteristics of the tissues were improved and expression of TNF-α, IL-6, MMP-3 and COX-2 in the paws and joints of the treated mice decreased in a dose-dependent manner compared with control mice. Furthermore, micro-CT analysis revealed that chebulanin induced a dose-dependent reduction in cartilage destruction and bone erosion. Taken together, our findings suggest that chebulanin suppresses the expression of inflammatory mediators and prevents cartilage destruction and bone erosion in mice. Therefore, chebulanin is a strong therapeutic alternative for the treatment of RA.

No MeSH data available.


Related in: MedlinePlus