Limits...
Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array.

Rau TS, Lenarz T, Majdani O - Int J Otolaryngol (2015)

Bottom Line: Conclusion.This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion.Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

View Article: PubMed Central - PubMed

Affiliation: Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.

ABSTRACT
Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed "trauma risk" rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

No MeSH data available.


Related in: MedlinePlus

Comparison of the relationship between implant feed (y axis) and stylet extraction (x axis) for the AOS technique (red dotted line, strong linear relationship as recommended by the manufacturer) and for the optimized insertions (grey lines). The black line indicates an averaged profile for stylet extraction during the insertion process; even this small change appears to be advantageous compared with the conventional AOS technique.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4581552&req=5

fig20: Comparison of the relationship between implant feed (y axis) and stylet extraction (x axis) for the AOS technique (red dotted line, strong linear relationship as recommended by the manufacturer) and for the optimized insertions (grey lines). The black line indicates an averaged profile for stylet extraction during the insertion process; even this small change appears to be advantageous compared with the conventional AOS technique.

Mentions: A closer look at the relationship between implant feed and stylet extraction shows that there is uniform deviation from the original AOS technique after optimization. As Figure 20 shows, even if an averaged insertion profile (black line) is used, the trauma risk can be reduced. This applies especially to the last two-thirds of the insertion process.


Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array.

Rau TS, Lenarz T, Majdani O - Int J Otolaryngol (2015)

Comparison of the relationship between implant feed (y axis) and stylet extraction (x axis) for the AOS technique (red dotted line, strong linear relationship as recommended by the manufacturer) and for the optimized insertions (grey lines). The black line indicates an averaged profile for stylet extraction during the insertion process; even this small change appears to be advantageous compared with the conventional AOS technique.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4581552&req=5

fig20: Comparison of the relationship between implant feed (y axis) and stylet extraction (x axis) for the AOS technique (red dotted line, strong linear relationship as recommended by the manufacturer) and for the optimized insertions (grey lines). The black line indicates an averaged profile for stylet extraction during the insertion process; even this small change appears to be advantageous compared with the conventional AOS technique.
Mentions: A closer look at the relationship between implant feed and stylet extraction shows that there is uniform deviation from the original AOS technique after optimization. As Figure 20 shows, even if an averaged insertion profile (black line) is used, the trauma risk can be reduced. This applies especially to the last two-thirds of the insertion process.

Bottom Line: Conclusion.This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion.Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

View Article: PubMed Central - PubMed

Affiliation: Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.

ABSTRACT
Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed "trauma risk" rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

No MeSH data available.


Related in: MedlinePlus