Limits...
Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array.

Rau TS, Lenarz T, Majdani O - Int J Otolaryngol (2015)

Bottom Line: Conclusion.This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion.Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

View Article: PubMed Central - PubMed

Affiliation: Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.

ABSTRACT
Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed "trauma risk" rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

No MeSH data available.


Related in: MedlinePlus

(a, b) Example images showing the measured distances A and B according to the metrological method introduced by Escudé et al. [36]. RW: round window membrane. (c) Bar chart showing A and B values and height of the inner ear for all 23 investigated cochleae. Distance A was used to distinguish the smallest, largest, and medium-sized cochlea.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4581552&req=5

fig5: (a, b) Example images showing the measured distances A and B according to the metrological method introduced by Escudé et al. [36]. RW: round window membrane. (c) Bar chart showing A and B values and height of the inner ear for all 23 investigated cochleae. Distance A was used to distinguish the smallest, largest, and medium-sized cochlea.

Mentions: The present study is designed to take into consideration the anatomical variability of the human inner ear. In order to have a single parameter which characterizes differences in size, a measurement method introduced by Escudé et al. [36] was applied. The greatest lateral dimension of the basal turn was measured (distance “A”) in accordance with their description (see Figure 5). Based on these values, the smallest (CS), the medium-sized (CM), and the largest (CL) cochleae were chosen and used for the subsequent investigations as representatives of inherent anatomical variability.


Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array.

Rau TS, Lenarz T, Majdani O - Int J Otolaryngol (2015)

(a, b) Example images showing the measured distances A and B according to the metrological method introduced by Escudé et al. [36]. RW: round window membrane. (c) Bar chart showing A and B values and height of the inner ear for all 23 investigated cochleae. Distance A was used to distinguish the smallest, largest, and medium-sized cochlea.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4581552&req=5

fig5: (a, b) Example images showing the measured distances A and B according to the metrological method introduced by Escudé et al. [36]. RW: round window membrane. (c) Bar chart showing A and B values and height of the inner ear for all 23 investigated cochleae. Distance A was used to distinguish the smallest, largest, and medium-sized cochlea.
Mentions: The present study is designed to take into consideration the anatomical variability of the human inner ear. In order to have a single parameter which characterizes differences in size, a measurement method introduced by Escudé et al. [36] was applied. The greatest lateral dimension of the basal turn was measured (distance “A”) in accordance with their description (see Figure 5). Based on these values, the smallest (CS), the medium-sized (CM), and the largest (CL) cochleae were chosen and used for the subsequent investigations as representatives of inherent anatomical variability.

Bottom Line: Conclusion.This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion.Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

View Article: PubMed Central - PubMed

Affiliation: Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.

ABSTRACT
Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed "trauma risk" rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

No MeSH data available.


Related in: MedlinePlus