Limits...
Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array.

Rau TS, Lenarz T, Majdani O - Int J Otolaryngol (2015)

Bottom Line: Conclusion.This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion.Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

View Article: PubMed Central - PubMed

Affiliation: Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.

ABSTRACT
Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed "trauma risk" rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

No MeSH data available.


Related in: MedlinePlus

Overlay of an original image of the electrode array and its modelled shape.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4581552&req=5

fig4: Overlay of an original image of the electrode array and its modelled shape.

Mentions: Based on these already existing data, the spatial dimensions of the electrode array in the curling plane were modelled. This was necessary for meaningful simulation of the intracochlear curling behaviour since, if the shape of the electrode array is represented only by a thin line, it is not sufficient to allow the interaction of the implant with the surrounding anatomical structures to be modelled. Therefore, the inner contour of the CA electrode array was modelled by drawing a second polyline at a constant distance of 0.15 mm to the fitted central path. The same applied to the outer contour of the electrode array, with decreasing distance between 0.65 mm and 0.45 mm to allow for the tapered shape of the silicone body. The tip was added to the outline by means of two straight lines. This approach to visualizing the changing geometry of the electrode array caused by stylet removal was verified by overlaying the original images with the drawn outline of the implant. Good agreement between the calculated shape of the electrode array and the experimental images was obtained, as shown in Figure 4.


Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array.

Rau TS, Lenarz T, Majdani O - Int J Otolaryngol (2015)

Overlay of an original image of the electrode array and its modelled shape.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4581552&req=5

fig4: Overlay of an original image of the electrode array and its modelled shape.
Mentions: Based on these already existing data, the spatial dimensions of the electrode array in the curling plane were modelled. This was necessary for meaningful simulation of the intracochlear curling behaviour since, if the shape of the electrode array is represented only by a thin line, it is not sufficient to allow the interaction of the implant with the surrounding anatomical structures to be modelled. Therefore, the inner contour of the CA electrode array was modelled by drawing a second polyline at a constant distance of 0.15 mm to the fitted central path. The same applied to the outer contour of the electrode array, with decreasing distance between 0.65 mm and 0.45 mm to allow for the tapered shape of the silicone body. The tip was added to the outline by means of two straight lines. This approach to visualizing the changing geometry of the electrode array caused by stylet removal was verified by overlaying the original images with the drawn outline of the implant. Good agreement between the calculated shape of the electrode array and the experimental images was obtained, as shown in Figure 4.

Bottom Line: Conclusion.This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion.Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

View Article: PubMed Central - PubMed

Affiliation: Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.

ABSTRACT
Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed "trauma risk" rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.

No MeSH data available.


Related in: MedlinePlus