Limits...
Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach.

Sommertune J, Sugunan A, Ahniyaz A, Bejhed RS, Sarwe A, Johansson C, Balceris C, Ludwig F, Posth O, Fornara A - Int J Mol Sci (2015)

Bottom Line: Multi-core particles were obtained within the Z-average size range of 130 to 340 nm.With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles.The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy.

View Article: PubMed Central - PubMed

Affiliation: SP, Technical Research Institute of Sweden, Box 5607, SE-114 86 Stockholm, Sweden. jens.sommertune@sp.se.

ABSTRACT
Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy.

No MeSH data available.


Related in: MedlinePlus

AC magnetization versus temperature for samples A and B. The different curves correspond to different frequencies of the AC magnetic field. The AC magnetic field amplitude is 320 A/m.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4581323&req=5

ijms-16-19752-f007: AC magnetization versus temperature for samples A and B. The different curves correspond to different frequencies of the AC magnetic field. The AC magnetic field amplitude is 320 A/m.

Mentions: We also measured low field AC magnetization versus temperature at different frequencies of the applied AC magnetic field. In such measurements, a low amplitude AC magnetic field is applied and the dynamic magnetic response from the sample is measured as a function of temperature. In Figure 7a,b, the in- and out-of-phase AC magnetization is plotted versus temperature for Sample A and Sample B, respectively, the different curves correspond to different AC magnetic field frequencies. The superparamagnetic behaviour remains for both samples until low temperature and blocking/freezing of nanocrystal magnetic moments is not observed until the temperature has reached below about 150 K.


Polymer/Iron Oxide Nanoparticle Composites--A Straight Forward and Scalable Synthesis Approach.

Sommertune J, Sugunan A, Ahniyaz A, Bejhed RS, Sarwe A, Johansson C, Balceris C, Ludwig F, Posth O, Fornara A - Int J Mol Sci (2015)

AC magnetization versus temperature for samples A and B. The different curves correspond to different frequencies of the AC magnetic field. The AC magnetic field amplitude is 320 A/m.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4581323&req=5

ijms-16-19752-f007: AC magnetization versus temperature for samples A and B. The different curves correspond to different frequencies of the AC magnetic field. The AC magnetic field amplitude is 320 A/m.
Mentions: We also measured low field AC magnetization versus temperature at different frequencies of the applied AC magnetic field. In such measurements, a low amplitude AC magnetic field is applied and the dynamic magnetic response from the sample is measured as a function of temperature. In Figure 7a,b, the in- and out-of-phase AC magnetization is plotted versus temperature for Sample A and Sample B, respectively, the different curves correspond to different AC magnetic field frequencies. The superparamagnetic behaviour remains for both samples until low temperature and blocking/freezing of nanocrystal magnetic moments is not observed until the temperature has reached below about 150 K.

Bottom Line: Multi-core particles were obtained within the Z-average size range of 130 to 340 nm.With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles.The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy.

View Article: PubMed Central - PubMed

Affiliation: SP, Technical Research Institute of Sweden, Box 5607, SE-114 86 Stockholm, Sweden. jens.sommertune@sp.se.

ABSTRACT
Magnetic nanoparticle systems can be divided into single-core nanoparticles (with only one magnetic core per particle) and magnetic multi-core nanoparticles (with several magnetic cores per particle). Here, we report multi-core nanoparticle synthesis based on a controlled precipitation process within a well-defined oil in water emulsion to trap the superparamagnetic iron oxide nanoparticles (SPION) in a range of polymer matrices of choice, such as poly(styrene), poly(lactid acid), poly(methyl methacrylate), and poly(caprolactone). Multi-core particles were obtained within the Z-average size range of 130 to 340 nm. With the aim to combine the fast room temperature magnetic relaxation of small individual cores with high magnetization of the ensemble of SPIONs, we used small (<10 nm) core nanoparticles. The performed synthesis is highly flexible with respect to the choice of polymer and SPION loading and gives rise to multi-core particles with interesting magnetic properties and magnetic resonance imaging (MRI) contrast efficacy.

No MeSH data available.


Related in: MedlinePlus