Limits...
CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

Ma X, Ma J, Zhai H, Xin P, Chu J, Qiao Y, Han L - PLoS ONE (2015)

Bottom Line: RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type.Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type.These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

View Article: PubMed Central - PubMed

Affiliation: National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.

ABSTRACT
CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

No MeSH data available.


Related in: MedlinePlus

Seed germination of WT and t483.A, Germination of WT and t483 seeds after 3 days. B–E, Seedlings of WT and t483 at 8 days post-germination. F, Seed germination rate. Values are means ±SD of three independent experiments. Significance of differences between WT and t483 was determined by Student’s t-test (**P<0.01). Scale bars: 2 cm (A–D); 1 cm (E).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4580627&req=5

pone.0138934.g001: Seed germination of WT and t483.A, Germination of WT and t483 seeds after 3 days. B–E, Seedlings of WT and t483 at 8 days post-germination. F, Seed germination rate. Values are means ±SD of three independent experiments. Significance of differences between WT and t483 was determined by Student’s t-test (**P<0.01). Scale bars: 2 cm (A–D); 1 cm (E).

Mentions: When compared to WT rice plants, t483 plants exhibited abnormal growth at every stage of development. The germination rate was significantly lower in the t483 mutant than in WT, with a clear difference first becoming apparent three days after germination (Fig 1A). Eight days post-germination, shoots of t483 were shorter than those of WT and roots in the mutant were shorter and lower in number (Fig 1B–1D). Furthermore, approximately 30% of the t483 mutant seeds arrested at the germination stage (Fig 1B, 1E and 1F). These results indicate that t483 is defective in seed germination.


CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

Ma X, Ma J, Zhai H, Xin P, Chu J, Qiao Y, Han L - PLoS ONE (2015)

Seed germination of WT and t483.A, Germination of WT and t483 seeds after 3 days. B–E, Seedlings of WT and t483 at 8 days post-germination. F, Seed germination rate. Values are means ±SD of three independent experiments. Significance of differences between WT and t483 was determined by Student’s t-test (**P<0.01). Scale bars: 2 cm (A–D); 1 cm (E).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4580627&req=5

pone.0138934.g001: Seed germination of WT and t483.A, Germination of WT and t483 seeds after 3 days. B–E, Seedlings of WT and t483 at 8 days post-germination. F, Seed germination rate. Values are means ±SD of three independent experiments. Significance of differences between WT and t483 was determined by Student’s t-test (**P<0.01). Scale bars: 2 cm (A–D); 1 cm (E).
Mentions: When compared to WT rice plants, t483 plants exhibited abnormal growth at every stage of development. The germination rate was significantly lower in the t483 mutant than in WT, with a clear difference first becoming apparent three days after germination (Fig 1A). Eight days post-germination, shoots of t483 were shorter than those of WT and roots in the mutant were shorter and lower in number (Fig 1B–1D). Furthermore, approximately 30% of the t483 mutant seeds arrested at the germination stage (Fig 1B, 1E and 1F). These results indicate that t483 is defective in seed germination.

Bottom Line: RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type.Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type.These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

View Article: PubMed Central - PubMed

Affiliation: National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.

ABSTRACT
CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

No MeSH data available.


Related in: MedlinePlus