Limits...
A New Large Hyainailourine from the Bartonian of Europe and Its Bearings on the Evolution and Ecology of Massive Hyaenodonts (Mammalia).

Solé F, Amson E, Borths M, Vidalenc D, Morlo M, Bastl K - PLoS ONE (2015)

Bottom Line: These migrants have no ecological equivalent in Europe during these intervals and likely did not conflict with the endemic hyaenodont proviverrines.Surprisingly, the late Miocene Hyainailouros shares a more recent common ancestor with small-bodied hyainailourines (below 15 kg).Finally, our study supports a close relationship between the Hyainailourinae and Apterodontinae and we propose the new clade: Hyainailouridae.

View Article: PubMed Central - PubMed

Affiliation: D. O. Earth and history of Life, Department of Paleontology, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000, Brussels, Belgium; Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P: CNRS, MNHN, UPMC-Paris-06, Sorbonne Universités), Muséum national d'Histoire Naturelle, département Histoire de la Terre, 57 rue Cuvier, CP38, F-75005, Paris, France.

ABSTRACT
We describe a new large-sized species of hypercarnivorous hyainailourine-Kerberos langebadreae gen. & sp. nov.-from the Bartonian (MP16) locality of Montespieu (Tarn, France). These specimens consist of a skull, two hemimandibles and several hind limb elements (fibula, astragalus, calcaneum, metatarsals, and phalanges). Size estimates suggest K. langebadreae may have weighed up to 140 kg, revealing this species as the largest carnivorous mammal in Europe at that time. Besides its very large size, K. langebadreae possesses an interesting combination of primitive and derived features. The distinctive skull morphology of K. langebadreae reflects a powerful bite force. The postcranial elements, which are rarely associated with hyainailourine specimens, indicate an animal capable of a plantigrade stance and adapted for terrestrial locomotion. We performed the first phylogenetic analysis of hyainailourines to determine the systematic position of K. langebadreae and to understand the evolution of the group that includes other massive carnivores. The analysis demonstrates that Hemipsalodon, a North American taxon, is a hyainailourine and is closely related to European Paroxyaena. Based on this analysis we hypothesize the biogeographic history of the Hyainailourinae. The group appeared in Africa with a first migration to Europe during the Bartonian that likely included the ancestors of Kerberos, Paroxyaena and Hemipsalodon, which further dispersed into North America at this time. We propose that the hyainailourines dispersed into Europe also during the Priabonian. These migrants have no ecological equivalent in Europe during these intervals and likely did not conflict with the endemic hyaenodont proviverrines. The discovery of K. langebadreae shows that large body size appears early in the evolution of hyainailourines. Surprisingly, the late Miocene Hyainailouros shares a more recent common ancestor with small-bodied hyainailourines (below 15 kg). Finally, our study supports a close relationship between the Hyainailourinae and Apterodontinae and we propose the new clade: Hyainailouridae.

No MeSH data available.


Related in: MedlinePlus

Drawings of the skull of Kerberos langebadreae gen. & sp. nov. (holotype, MNHN.F.EBA 517).A, dorsal view; B, ventral view; C, left lateral view; D, right lateral view. Abbreviations: Al., alisphenoid; An. C. F., anterior condyloid foramen; Bas., basisphenoid; F. M., foramen magnum; F. Ov., foramen oval; Fr., frontal; Inc. F., incisive foramen; Infr. F., infraorbital foramen; J., jugal; La., lacrimal; Mas. Ap., mastoid apophysis; Mas. Par. Ap., mastoid-paroccipital apophysis; Mas. Pr., mastoid process; Max., maxilla; Na., nasal; Oc. C., occipital condyle; Oc., occipital; Op. F., optic foramen; P. Gl. Pr., postglenoid process; Pa., parietal; Pal., palatine; Par. Ap., paroccipial apophysis; Po. F., posterior pterygoid foramen; Pr. Gl. Pr., preglenoid process; Premax., premaxilla; Sag. Cr., sagittal crest; Sq., squamosal; To. Pal., torus palatinus.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4580617&req=5

pone.0135698.g013: Drawings of the skull of Kerberos langebadreae gen. & sp. nov. (holotype, MNHN.F.EBA 517).A, dorsal view; B, ventral view; C, left lateral view; D, right lateral view. Abbreviations: Al., alisphenoid; An. C. F., anterior condyloid foramen; Bas., basisphenoid; F. M., foramen magnum; F. Ov., foramen oval; Fr., frontal; Inc. F., incisive foramen; Infr. F., infraorbital foramen; J., jugal; La., lacrimal; Mas. Ap., mastoid apophysis; Mas. Par. Ap., mastoid-paroccipital apophysis; Mas. Pr., mastoid process; Max., maxilla; Na., nasal; Oc. C., occipital condyle; Oc., occipital; Op. F., optic foramen; P. Gl. Pr., postglenoid process; Pa., parietal; Pal., palatine; Par. Ap., paroccipial apophysis; Po. F., posterior pterygoid foramen; Pr. Gl. Pr., preglenoid process; Premax., premaxilla; Sag. Cr., sagittal crest; Sq., squamosal; To. Pal., torus palatinus.

Mentions: The skull of the holotype is distorted transversally but is almost complete (Fig 7). It is also riddled with postmortem cracks and breaks, which partly obliterate the sutures (see Fig 13 for drawings of the skull with indications of the sutures). The auditory region, which is poorly preserved, will not be described thoroughly. The taxa chosen for comparison assessed from original specimens housed in the MNHN and literature represent the different subfamilies of Hyaenodonta (i.e., the Proviverrinae, Hyainailourinae, Hyaenodontinae, and Limnocyoninae), which are known from the Bartonian, Priabonian and Oligocene.


A New Large Hyainailourine from the Bartonian of Europe and Its Bearings on the Evolution and Ecology of Massive Hyaenodonts (Mammalia).

Solé F, Amson E, Borths M, Vidalenc D, Morlo M, Bastl K - PLoS ONE (2015)

Drawings of the skull of Kerberos langebadreae gen. & sp. nov. (holotype, MNHN.F.EBA 517).A, dorsal view; B, ventral view; C, left lateral view; D, right lateral view. Abbreviations: Al., alisphenoid; An. C. F., anterior condyloid foramen; Bas., basisphenoid; F. M., foramen magnum; F. Ov., foramen oval; Fr., frontal; Inc. F., incisive foramen; Infr. F., infraorbital foramen; J., jugal; La., lacrimal; Mas. Ap., mastoid apophysis; Mas. Par. Ap., mastoid-paroccipital apophysis; Mas. Pr., mastoid process; Max., maxilla; Na., nasal; Oc. C., occipital condyle; Oc., occipital; Op. F., optic foramen; P. Gl. Pr., postglenoid process; Pa., parietal; Pal., palatine; Par. Ap., paroccipial apophysis; Po. F., posterior pterygoid foramen; Pr. Gl. Pr., preglenoid process; Premax., premaxilla; Sag. Cr., sagittal crest; Sq., squamosal; To. Pal., torus palatinus.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4580617&req=5

pone.0135698.g013: Drawings of the skull of Kerberos langebadreae gen. & sp. nov. (holotype, MNHN.F.EBA 517).A, dorsal view; B, ventral view; C, left lateral view; D, right lateral view. Abbreviations: Al., alisphenoid; An. C. F., anterior condyloid foramen; Bas., basisphenoid; F. M., foramen magnum; F. Ov., foramen oval; Fr., frontal; Inc. F., incisive foramen; Infr. F., infraorbital foramen; J., jugal; La., lacrimal; Mas. Ap., mastoid apophysis; Mas. Par. Ap., mastoid-paroccipital apophysis; Mas. Pr., mastoid process; Max., maxilla; Na., nasal; Oc. C., occipital condyle; Oc., occipital; Op. F., optic foramen; P. Gl. Pr., postglenoid process; Pa., parietal; Pal., palatine; Par. Ap., paroccipial apophysis; Po. F., posterior pterygoid foramen; Pr. Gl. Pr., preglenoid process; Premax., premaxilla; Sag. Cr., sagittal crest; Sq., squamosal; To. Pal., torus palatinus.
Mentions: The skull of the holotype is distorted transversally but is almost complete (Fig 7). It is also riddled with postmortem cracks and breaks, which partly obliterate the sutures (see Fig 13 for drawings of the skull with indications of the sutures). The auditory region, which is poorly preserved, will not be described thoroughly. The taxa chosen for comparison assessed from original specimens housed in the MNHN and literature represent the different subfamilies of Hyaenodonta (i.e., the Proviverrinae, Hyainailourinae, Hyaenodontinae, and Limnocyoninae), which are known from the Bartonian, Priabonian and Oligocene.

Bottom Line: These migrants have no ecological equivalent in Europe during these intervals and likely did not conflict with the endemic hyaenodont proviverrines.Surprisingly, the late Miocene Hyainailouros shares a more recent common ancestor with small-bodied hyainailourines (below 15 kg).Finally, our study supports a close relationship between the Hyainailourinae and Apterodontinae and we propose the new clade: Hyainailouridae.

View Article: PubMed Central - PubMed

Affiliation: D. O. Earth and history of Life, Department of Paleontology, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000, Brussels, Belgium; Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P: CNRS, MNHN, UPMC-Paris-06, Sorbonne Universités), Muséum national d'Histoire Naturelle, département Histoire de la Terre, 57 rue Cuvier, CP38, F-75005, Paris, France.

ABSTRACT
We describe a new large-sized species of hypercarnivorous hyainailourine-Kerberos langebadreae gen. & sp. nov.-from the Bartonian (MP16) locality of Montespieu (Tarn, France). These specimens consist of a skull, two hemimandibles and several hind limb elements (fibula, astragalus, calcaneum, metatarsals, and phalanges). Size estimates suggest K. langebadreae may have weighed up to 140 kg, revealing this species as the largest carnivorous mammal in Europe at that time. Besides its very large size, K. langebadreae possesses an interesting combination of primitive and derived features. The distinctive skull morphology of K. langebadreae reflects a powerful bite force. The postcranial elements, which are rarely associated with hyainailourine specimens, indicate an animal capable of a plantigrade stance and adapted for terrestrial locomotion. We performed the first phylogenetic analysis of hyainailourines to determine the systematic position of K. langebadreae and to understand the evolution of the group that includes other massive carnivores. The analysis demonstrates that Hemipsalodon, a North American taxon, is a hyainailourine and is closely related to European Paroxyaena. Based on this analysis we hypothesize the biogeographic history of the Hyainailourinae. The group appeared in Africa with a first migration to Europe during the Bartonian that likely included the ancestors of Kerberos, Paroxyaena and Hemipsalodon, which further dispersed into North America at this time. We propose that the hyainailourines dispersed into Europe also during the Priabonian. These migrants have no ecological equivalent in Europe during these intervals and likely did not conflict with the endemic hyaenodont proviverrines. The discovery of K. langebadreae shows that large body size appears early in the evolution of hyainailourines. Surprisingly, the late Miocene Hyainailouros shares a more recent common ancestor with small-bodied hyainailourines (below 15 kg). Finally, our study supports a close relationship between the Hyainailourinae and Apterodontinae and we propose the new clade: Hyainailouridae.

No MeSH data available.


Related in: MedlinePlus