Limits...
Biogeography of photoautotrophs in the high polar biome.

Pointing SB - Front Plant Sci (2015)

Bottom Line: Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy.Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography.We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

View Article: PubMed Central - PubMed

Affiliation: Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology , Auckland, New Zealand.

ABSTRACT
The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

No MeSH data available.


Related in: MedlinePlus

Historical biogeography of polar photoautotrophs. Historic climate and vascular plant biodiversity in the Arctic and Antarctic. Pink represents Southern Ocean ice-free sea-surface relative temperature. Cooling in the Arctic was less severe during the Neogene than in Antarctica (Huber, 1998; Zachos et al., 2001). Plant symbols reflect general morphology of each group and are not to scale. Pl indicates Pliocene.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4566839&req=5

Figure 2: Historical biogeography of polar photoautotrophs. Historic climate and vascular plant biodiversity in the Arctic and Antarctic. Pink represents Southern Ocean ice-free sea-surface relative temperature. Cooling in the Arctic was less severe during the Neogene than in Antarctica (Huber, 1998; Zachos et al., 2001). Plant symbols reflect general morphology of each group and are not to scale. Pl indicates Pliocene.

Mentions: Antarctica rafted over the pole during the early Cretaceous supporting productive rainforests with trees 40m high (Cantrill and Poole, 2012). By the mid Cretaceous deciduous taxodiaceae forest also occurred in the Arctic up to 85°N. Angiosperms migrated into high latitudes of both poles ∼15 My after appearing at lower latitudes (Herman and Spicer, 2010; Cantrill and Poole, 2012). By the Cretaceous thermal maximum, the global temperature gradient was almost flat (0.10 vs. 0.40°C/degree latitude today; Huber et al., 2002; Hay and Floegel, 2012) and diverse forest dominated by angiosperms occurred at both poles (Spicer and Herman, 2010; Cantrill and Poole, 2012; Figure 2). Global cooling ensued during the late Cretaceous in the Arctic and Antarctic (Moran et al., 2006) causing shifts toward cooler temperate forests (Cantrill and Poole, 2012; Falcon-Lang et al., 2004) that nonetheless remained productive (Williams et al., 2009; Spicer and Herman, 2010) and free of mass extinctions across the Cretaceous–Paleogene boundary (Herman et al., 2004; Spicer and Herman, 2010; Cantrill and Poole, 2012).


Biogeography of photoautotrophs in the high polar biome.

Pointing SB - Front Plant Sci (2015)

Historical biogeography of polar photoautotrophs. Historic climate and vascular plant biodiversity in the Arctic and Antarctic. Pink represents Southern Ocean ice-free sea-surface relative temperature. Cooling in the Arctic was less severe during the Neogene than in Antarctica (Huber, 1998; Zachos et al., 2001). Plant symbols reflect general morphology of each group and are not to scale. Pl indicates Pliocene.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4566839&req=5

Figure 2: Historical biogeography of polar photoautotrophs. Historic climate and vascular plant biodiversity in the Arctic and Antarctic. Pink represents Southern Ocean ice-free sea-surface relative temperature. Cooling in the Arctic was less severe during the Neogene than in Antarctica (Huber, 1998; Zachos et al., 2001). Plant symbols reflect general morphology of each group and are not to scale. Pl indicates Pliocene.
Mentions: Antarctica rafted over the pole during the early Cretaceous supporting productive rainforests with trees 40m high (Cantrill and Poole, 2012). By the mid Cretaceous deciduous taxodiaceae forest also occurred in the Arctic up to 85°N. Angiosperms migrated into high latitudes of both poles ∼15 My after appearing at lower latitudes (Herman and Spicer, 2010; Cantrill and Poole, 2012). By the Cretaceous thermal maximum, the global temperature gradient was almost flat (0.10 vs. 0.40°C/degree latitude today; Huber et al., 2002; Hay and Floegel, 2012) and diverse forest dominated by angiosperms occurred at both poles (Spicer and Herman, 2010; Cantrill and Poole, 2012; Figure 2). Global cooling ensued during the late Cretaceous in the Arctic and Antarctic (Moran et al., 2006) causing shifts toward cooler temperate forests (Cantrill and Poole, 2012; Falcon-Lang et al., 2004) that nonetheless remained productive (Williams et al., 2009; Spicer and Herman, 2010) and free of mass extinctions across the Cretaceous–Paleogene boundary (Herman et al., 2004; Spicer and Herman, 2010; Cantrill and Poole, 2012).

Bottom Line: Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy.Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography.We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

View Article: PubMed Central - PubMed

Affiliation: Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology , Auckland, New Zealand.

ABSTRACT
The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

No MeSH data available.


Related in: MedlinePlus