Limits...
BASCO: a toolbox for task-related functional connectivity.

Göttlich M, Beyer F, Krämer UM - Front Syst Neurosci (2015)

Bottom Line: BASCO supports seed-based functional connectivity as well as brain network analyses.Thus, BASCO allows investigating task-specific rather than resting-state networks.Here, we summarize the main features of the toolbox and describe the methods and algorithms.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, University of Lübeck Lübeck, Germany.

ABSTRACT
BASCO (BetA Series COrrelation) is a user-friendly MATLAB toolbox with a graphical user interface (GUI) which allows investigating functional connectivity in event-related functional magnetic resonance imaging (fMRI) data. Connectivity analyses extend and compliment univariate activation analyses since the actual interaction between brain regions involved in a task can be explored. BASCO supports seed-based functional connectivity as well as brain network analyses. Although there are a multitude of advanced toolboxes for investigating resting-state functional connectivity, BASCO is the first toolbox for evaluating task-related whole-brain functional connectivity employing a large number of network nodes. Thus, BASCO allows investigating task-specific rather than resting-state networks. Here, we summarize the main features of the toolbox and describe the methods and algorithms.

No MeSH data available.


Voxel-wise degree centrality. (A) Degree centrality map for the emotional condition (single subject). (B) Main effect of emotional vs. neutral content on the degree centrality. Shown is the result of an analysis based on the degree centrality maps of 26 subjects. For the purpose of this illustration, uncorrected data (p < 0.005; cluster size k > 100; Table 1) are presented.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4565057&req=5

Figure 5: Voxel-wise degree centrality. (A) Degree centrality map for the emotional condition (single subject). (B) Main effect of emotional vs. neutral content on the degree centrality. Shown is the result of an analysis based on the degree centrality maps of 26 subjects. For the purpose of this illustration, uncorrected data (p < 0.005; cluster size k > 100; Table 1) are presented.

Mentions: Finally, Figure 5A shows a single subject voxel-level degree centrality map derived from trials with emotional content. The tutorial data was resampled to 3 × 3 × 3 mm3 resulting in 70,000 voxels for whole brain analyses. The network matrix contains 2.45 billion unique entries. The degree centrality was evaluated using a mask covering the whole brain and applying a threshold of w = 0.6 to the correlation coefficients. As expected, ventricles and white matter showed a low degree centrality. In general, gray matter shows a higher degree centrality. The highest degree centrality values are observed in the precuneus, angular gyrus, anterior insula and fusiform gyrus.


BASCO: a toolbox for task-related functional connectivity.

Göttlich M, Beyer F, Krämer UM - Front Syst Neurosci (2015)

Voxel-wise degree centrality. (A) Degree centrality map for the emotional condition (single subject). (B) Main effect of emotional vs. neutral content on the degree centrality. Shown is the result of an analysis based on the degree centrality maps of 26 subjects. For the purpose of this illustration, uncorrected data (p < 0.005; cluster size k > 100; Table 1) are presented.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4565057&req=5

Figure 5: Voxel-wise degree centrality. (A) Degree centrality map for the emotional condition (single subject). (B) Main effect of emotional vs. neutral content on the degree centrality. Shown is the result of an analysis based on the degree centrality maps of 26 subjects. For the purpose of this illustration, uncorrected data (p < 0.005; cluster size k > 100; Table 1) are presented.
Mentions: Finally, Figure 5A shows a single subject voxel-level degree centrality map derived from trials with emotional content. The tutorial data was resampled to 3 × 3 × 3 mm3 resulting in 70,000 voxels for whole brain analyses. The network matrix contains 2.45 billion unique entries. The degree centrality was evaluated using a mask covering the whole brain and applying a threshold of w = 0.6 to the correlation coefficients. As expected, ventricles and white matter showed a low degree centrality. In general, gray matter shows a higher degree centrality. The highest degree centrality values are observed in the precuneus, angular gyrus, anterior insula and fusiform gyrus.

Bottom Line: BASCO supports seed-based functional connectivity as well as brain network analyses.Thus, BASCO allows investigating task-specific rather than resting-state networks.Here, we summarize the main features of the toolbox and describe the methods and algorithms.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, University of Lübeck Lübeck, Germany.

ABSTRACT
BASCO (BetA Series COrrelation) is a user-friendly MATLAB toolbox with a graphical user interface (GUI) which allows investigating functional connectivity in event-related functional magnetic resonance imaging (fMRI) data. Connectivity analyses extend and compliment univariate activation analyses since the actual interaction between brain regions involved in a task can be explored. BASCO supports seed-based functional connectivity as well as brain network analyses. Although there are a multitude of advanced toolboxes for investigating resting-state functional connectivity, BASCO is the first toolbox for evaluating task-related whole-brain functional connectivity employing a large number of network nodes. Thus, BASCO allows investigating task-specific rather than resting-state networks. Here, we summarize the main features of the toolbox and describe the methods and algorithms.

No MeSH data available.