Limits...
Temporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats.

Breitfeld T, Bruning JE, Inagaki H, Takeuchi Y, Kiyokawa Y, Fendt M - Front Neurosci (2015)

Bottom Line: One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST).The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors.Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone.

View Article: PubMed Central - PubMed

Affiliation: Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg Magdeburg, Germany.

ABSTRACT
Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors. We first established the behavioral paradigm of alarm pheromone-induced defensive behaviors in Sprague-Dawley rats in our laboratory. In a second experiment, we inactivated the aBNST, then exposed rats to one of four different odors (neck odor, female urine, alarm pheromone, fox urine) and tested the effects of the aBNST inactivation on the behavior in response to these odors. Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone. This indicates that the aBNST plays an important role in the mediation of the alarm pheromone-induced defensive behavior in rats.

No MeSH data available.


Related in: MedlinePlus

Effects of odors and aBNST inactivation on defensive behavior. Rats were exposed to neck odor (neck), female urine (female), alarm pheromone (alarm), or fox urine (fox). (A) Head out behavior, (B) time spent in the center, in percentage of the time spent outside. Data are expressed as means ± SEMs. *p < 0.05, ++p < 0.01, comparison with saline/alarm pheromone.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4563084&req=5

Figure 4: Effects of odors and aBNST inactivation on defensive behavior. Rats were exposed to neck odor (neck), female urine (female), alarm pheromone (alarm), or fox urine (fox). (A) Head out behavior, (B) time spent in the center, in percentage of the time spent outside. Data are expressed as means ± SEMs. *p < 0.05, ++p < 0.01, comparison with saline/alarm pheromone.

Mentions: During the testing period, head out behavior was the only behavior that was significantly affected by odors [Figure 4A; ANOVA: factor odor: F(3, 65) = 2.87; p = 0.04]. Particularly, the alarm pheromone increased head out behavior (paired t-tests: t = 3.23, p < 0.01 and t = 2.54, p < 0.03; comparison with neck odor and female urine, respectively). Notable, despite statistical analysis revealed no significant effect, the time spent in the center of the arena (as percentage of time spent outside) was slightly decreased by fox urine [Figure 4B; ANOVA: factor odor: F(3, 68) = 1.46, p = 0.23]. All other behaviors, such as conceal, distance moved, time near the stimulus, and outside, were not significantly affected by odors, especially alarm pheromone, in this experiment (Table 1; ANOVAs: factor odor: Fs < 0.61, ps > 0.61).


Temporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats.

Breitfeld T, Bruning JE, Inagaki H, Takeuchi Y, Kiyokawa Y, Fendt M - Front Neurosci (2015)

Effects of odors and aBNST inactivation on defensive behavior. Rats were exposed to neck odor (neck), female urine (female), alarm pheromone (alarm), or fox urine (fox). (A) Head out behavior, (B) time spent in the center, in percentage of the time spent outside. Data are expressed as means ± SEMs. *p < 0.05, ++p < 0.01, comparison with saline/alarm pheromone.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4563084&req=5

Figure 4: Effects of odors and aBNST inactivation on defensive behavior. Rats were exposed to neck odor (neck), female urine (female), alarm pheromone (alarm), or fox urine (fox). (A) Head out behavior, (B) time spent in the center, in percentage of the time spent outside. Data are expressed as means ± SEMs. *p < 0.05, ++p < 0.01, comparison with saline/alarm pheromone.
Mentions: During the testing period, head out behavior was the only behavior that was significantly affected by odors [Figure 4A; ANOVA: factor odor: F(3, 65) = 2.87; p = 0.04]. Particularly, the alarm pheromone increased head out behavior (paired t-tests: t = 3.23, p < 0.01 and t = 2.54, p < 0.03; comparison with neck odor and female urine, respectively). Notable, despite statistical analysis revealed no significant effect, the time spent in the center of the arena (as percentage of time spent outside) was slightly decreased by fox urine [Figure 4B; ANOVA: factor odor: F(3, 68) = 1.46, p = 0.23]. All other behaviors, such as conceal, distance moved, time near the stimulus, and outside, were not significantly affected by odors, especially alarm pheromone, in this experiment (Table 1; ANOVAs: factor odor: Fs < 0.61, ps > 0.61).

Bottom Line: One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST).The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors.Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone.

View Article: PubMed Central - PubMed

Affiliation: Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg Magdeburg, Germany.

ABSTRACT
Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors. We first established the behavioral paradigm of alarm pheromone-induced defensive behaviors in Sprague-Dawley rats in our laboratory. In a second experiment, we inactivated the aBNST, then exposed rats to one of four different odors (neck odor, female urine, alarm pheromone, fox urine) and tested the effects of the aBNST inactivation on the behavior in response to these odors. Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone. This indicates that the aBNST plays an important role in the mediation of the alarm pheromone-induced defensive behavior in rats.

No MeSH data available.


Related in: MedlinePlus