Limits...
Temporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats.

Breitfeld T, Bruning JE, Inagaki H, Takeuchi Y, Kiyokawa Y, Fendt M - Front Neurosci (2015)

Bottom Line: One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST).The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors.Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone.

View Article: PubMed Central - PubMed

Affiliation: Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg Magdeburg, Germany.

ABSTRACT
Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors. We first established the behavioral paradigm of alarm pheromone-induced defensive behaviors in Sprague-Dawley rats in our laboratory. In a second experiment, we inactivated the aBNST, then exposed rats to one of four different odors (neck odor, female urine, alarm pheromone, fox urine) and tested the effects of the aBNST inactivation on the behavior in response to these odors. Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone. This indicates that the aBNST plays an important role in the mediation of the alarm pheromone-induced defensive behavior in rats.

No MeSH data available.


Related in: MedlinePlus

Effects of the alarm pheromone on the behavior of Sprague-Dawley rats. Rats were exposed to either the alarm pheromone (alarm) or water. Data are expressed as means ± SEMs. *p < 0.05, paired t-tests.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4563084&req=5

Figure 1: Effects of the alarm pheromone on the behavior of Sprague-Dawley rats. Rats were exposed to either the alarm pheromone (alarm) or water. Data are expressed as means ± SEMs. *p < 0.05, paired t-tests.

Mentions: Aim of this experiment was to establish the paradigm published by Kiyokawa et al. (2006) in Sprague-Dawley rats and to replicate these findings. Exposing the rats to the alarm pheromone in an arena induced several behavioral changes (Figure 1). Alarm pheromone exposure increased the time of head out behavior [paired t-test: t(12) = 2.53, p = 0.03] and of conceal [t(12) = 2.44, p = 0.03]. Furthermore, the time spent near the stimulus (W12 = −51.00, p = 0.04), the time spent outside the hiding box [t(12) = 2.44, p = 0.03] and the distance moved [t(12) = 2.29, p = 0.04] decreased. Stretched attend behavior and grooming behavior were only seen very occasionally and therefore excluded from further analysis.


Temporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats.

Breitfeld T, Bruning JE, Inagaki H, Takeuchi Y, Kiyokawa Y, Fendt M - Front Neurosci (2015)

Effects of the alarm pheromone on the behavior of Sprague-Dawley rats. Rats were exposed to either the alarm pheromone (alarm) or water. Data are expressed as means ± SEMs. *p < 0.05, paired t-tests.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4563084&req=5

Figure 1: Effects of the alarm pheromone on the behavior of Sprague-Dawley rats. Rats were exposed to either the alarm pheromone (alarm) or water. Data are expressed as means ± SEMs. *p < 0.05, paired t-tests.
Mentions: Aim of this experiment was to establish the paradigm published by Kiyokawa et al. (2006) in Sprague-Dawley rats and to replicate these findings. Exposing the rats to the alarm pheromone in an arena induced several behavioral changes (Figure 1). Alarm pheromone exposure increased the time of head out behavior [paired t-test: t(12) = 2.53, p = 0.03] and of conceal [t(12) = 2.44, p = 0.03]. Furthermore, the time spent near the stimulus (W12 = −51.00, p = 0.04), the time spent outside the hiding box [t(12) = 2.44, p = 0.03] and the distance moved [t(12) = 2.29, p = 0.04] decreased. Stretched attend behavior and grooming behavior were only seen very occasionally and therefore excluded from further analysis.

Bottom Line: One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST).The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors.Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone.

View Article: PubMed Central - PubMed

Affiliation: Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg Magdeburg, Germany.

ABSTRACT
Rats emit an alarm pheromone in threatening situations. Exposure of rats to this alarm pheromone induces defensive behaviors, such as head out behavior, and increases c-Fos expression in brain areas involved in the mediation of defensive behaviors. One of these brain areas is the anterior bed nucleus of the stria terminalis (aBNST). The goal of the present study was to investigate if pharmacological inactivation of the aBNST by local microinjections of the GABAA receptor-agonist muscimol modulates alarm pheromone-induced defensive behaviors. We first established the behavioral paradigm of alarm pheromone-induced defensive behaviors in Sprague-Dawley rats in our laboratory. In a second experiment, we inactivated the aBNST, then exposed rats to one of four different odors (neck odor, female urine, alarm pheromone, fox urine) and tested the effects of the aBNST inactivation on the behavior in response to these odors. Our data show that temporary inactivation of the aBNST blocked head out behavior in response to the alarm pheromone. This indicates that the aBNST plays an important role in the mediation of the alarm pheromone-induced defensive behavior in rats.

No MeSH data available.


Related in: MedlinePlus