Limits...
Inorganic nanolayers: structure, preparation, and biomedical applications.

Saifullah B, Hussein MZ - Int J Nanomedicine (2015)

Bottom Line: Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science.These nanolayers have been widely applied in drug and gene delivery.The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes.

View Article: PubMed Central - PubMed

Affiliation: Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia.

ABSTRACT
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

No MeSH data available.


Schematic representation of ion-exchange process.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4562743&req=5

f5-ijn-10-5609: Schematic representation of ion-exchange process.

Mentions: Ion exchange is also commonly used for LDH synthesis, and has been successfully applied for the intercalation of a number of different types of anions.1,2,8,11 It is also known as an indirect method, in which the first LDHs are prepared with host anions, most commonly NO3−, CO32−, and Cl− In the later stages, anions present in the interlayer region are exchanged with the desired anions.1,2 The host–guest exchange mainly depends on the electrostatic forces between positively charged LDH layers and the exchanging anions, and Figure 5 shows the typical ion-exchange process.21


Inorganic nanolayers: structure, preparation, and biomedical applications.

Saifullah B, Hussein MZ - Int J Nanomedicine (2015)

Schematic representation of ion-exchange process.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4562743&req=5

f5-ijn-10-5609: Schematic representation of ion-exchange process.
Mentions: Ion exchange is also commonly used for LDH synthesis, and has been successfully applied for the intercalation of a number of different types of anions.1,2,8,11 It is also known as an indirect method, in which the first LDHs are prepared with host anions, most commonly NO3−, CO32−, and Cl− In the later stages, anions present in the interlayer region are exchanged with the desired anions.1,2 The host–guest exchange mainly depends on the electrostatic forces between positively charged LDH layers and the exchanging anions, and Figure 5 shows the typical ion-exchange process.21

Bottom Line: Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science.These nanolayers have been widely applied in drug and gene delivery.The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes.

View Article: PubMed Central - PubMed

Affiliation: Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia.

ABSTRACT
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

No MeSH data available.