Limits...
Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement.

Zhou X, Park SH, Mao H, Isoshima T, Wang Y, Ito Y - Int J Nanomedicine (2015)

Bottom Line: Even a high concentration of modified gelatin did not form a gel at room temperature.Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium.Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

View Article: PubMed Central - PubMed

Affiliation: Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan ; Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.

ABSTRACT
Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by (31)P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

No MeSH data available.


Related in: MedlinePlus

QCM results for phosphonated gelatin adsorbed on the titanium surface.Note: **P<0.01.Abbreviation: QCM, quartz crystal microbalance.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4562736&req=5

f7-ijn-10-5597: QCM results for phosphonated gelatin adsorbed on the titanium surface.Note: **P<0.01.Abbreviation: QCM, quartz crystal microbalance.

Mentions: Adsorption of phosphonated gelatin was measured by QCM (Figure 7). The adsorption was saturated at a phosphonated gelatin concentration of 3% with a real mass around 600 ng/cm2. Assuming that the molecular weight of phosphonated gelatin is 50 kDa, 1.2×1012 molecules of phosphonated gelatin were adsorbed per cm2 of titanium surface. Furthermore, assuming that the width of the phosphonated gelatin molecules is ~1.5 nm and the length is ~0.3 µm, one layer corresponded to around 2.2×1011 molecules per cm2 for side-on adsorption and 4.4×1013 molecules per cm2 for end-on adsorption. Collectively, the QCM results suggest that multi-layers were formed by side-on adsorption of the phosphonated gelatin molecules and less than one layer was formed by end-on adsorption. Assuming that the density of phosphonated gelatin is 1.2 g/cm3, which is a typical value for organic materials, 600 ng/cm2 corresponds to 5 nm in thickness.


Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement.

Zhou X, Park SH, Mao H, Isoshima T, Wang Y, Ito Y - Int J Nanomedicine (2015)

QCM results for phosphonated gelatin adsorbed on the titanium surface.Note: **P<0.01.Abbreviation: QCM, quartz crystal microbalance.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4562736&req=5

f7-ijn-10-5597: QCM results for phosphonated gelatin adsorbed on the titanium surface.Note: **P<0.01.Abbreviation: QCM, quartz crystal microbalance.
Mentions: Adsorption of phosphonated gelatin was measured by QCM (Figure 7). The adsorption was saturated at a phosphonated gelatin concentration of 3% with a real mass around 600 ng/cm2. Assuming that the molecular weight of phosphonated gelatin is 50 kDa, 1.2×1012 molecules of phosphonated gelatin were adsorbed per cm2 of titanium surface. Furthermore, assuming that the width of the phosphonated gelatin molecules is ~1.5 nm and the length is ~0.3 µm, one layer corresponded to around 2.2×1011 molecules per cm2 for side-on adsorption and 4.4×1013 molecules per cm2 for end-on adsorption. Collectively, the QCM results suggest that multi-layers were formed by side-on adsorption of the phosphonated gelatin molecules and less than one layer was formed by end-on adsorption. Assuming that the density of phosphonated gelatin is 1.2 g/cm3, which is a typical value for organic materials, 600 ng/cm2 corresponds to 5 nm in thickness.

Bottom Line: Even a high concentration of modified gelatin did not form a gel at room temperature.Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium.Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

View Article: PubMed Central - PubMed

Affiliation: Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan ; Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.

ABSTRACT
Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by (31)P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

No MeSH data available.


Related in: MedlinePlus