Limits...
Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement.

Zhou X, Park SH, Mao H, Isoshima T, Wang Y, Ito Y - Int J Nanomedicine (2015)

Bottom Line: Even a high concentration of modified gelatin did not form a gel at room temperature.Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium.Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

View Article: PubMed Central - PubMed

Affiliation: Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan ; Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.

ABSTRACT
Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by (31)P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

No MeSH data available.


Related in: MedlinePlus

Water and glycerol contact angle of the titanium surface treated with the phosphonated gelatin.Notes: n=10, error bars indicate the standard deviation. **P<0.01.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4562736&req=5

f10-ijn-10-5597: Water and glycerol contact angle of the titanium surface treated with the phosphonated gelatin.Notes: n=10, error bars indicate the standard deviation. **P<0.01.

Mentions: Figure 10 shows the water and glycerol contact angle of the titanium surface coated with various concentrations of unmodified and phosphonated gelatin. The results showed that the water contact angles of the titanium surface treated with phosphonated gelatin showed higher water contact angles than the untreated surface. The attachment to the surface of phosphonated gelatin significantly reduced the hydrophilicity of the titanium surface.


Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement.

Zhou X, Park SH, Mao H, Isoshima T, Wang Y, Ito Y - Int J Nanomedicine (2015)

Water and glycerol contact angle of the titanium surface treated with the phosphonated gelatin.Notes: n=10, error bars indicate the standard deviation. **P<0.01.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4562736&req=5

f10-ijn-10-5597: Water and glycerol contact angle of the titanium surface treated with the phosphonated gelatin.Notes: n=10, error bars indicate the standard deviation. **P<0.01.
Mentions: Figure 10 shows the water and glycerol contact angle of the titanium surface coated with various concentrations of unmodified and phosphonated gelatin. The results showed that the water contact angles of the titanium surface treated with phosphonated gelatin showed higher water contact angles than the untreated surface. The attachment to the surface of phosphonated gelatin significantly reduced the hydrophilicity of the titanium surface.

Bottom Line: Even a high concentration of modified gelatin did not form a gel at room temperature.Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium.Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

View Article: PubMed Central - PubMed

Affiliation: Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan ; Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.

ABSTRACT
Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by (31)P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface.

No MeSH data available.


Related in: MedlinePlus