Limits...
Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells.

Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H, Tanaka Y, Matsubara T, Naruse K - Stem Cell Res Ther (2015)

Bottom Line: Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed.Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats.Cryopreservation of DPSCs did not impair their proliferative or differential ability.

View Article: PubMed Central - PubMed

Affiliation: Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan. hata@dpc.agu.ac.jp.

ABSTRACT

Introduction: Dental pulp stem cells (DPSCs) are mesenchymal stem cells located in dental pulp and are thought to be a potential source for cell therapy since DPSCs can be easily obtained from teeth extracted for orthodontic reasons. Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed. The aim of this study is to evaluate the therapeutic potential of DPSC transplantation for diabetic polyneuropathy.

Methods: DPSCs isolated from the dental pulp of extracted incisors of Sprague-Dawley rats were partly frozen in a -80 °C freezer for 6 months. Cultured DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after streptozotocine injection and the effects of DPSC transplantation were evaluated 4 weeks after the transplantation.

Results: Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats. Cryopreservation of DPSCs did not impair their proliferative or differential ability. The transplantation of cryopreserved DPSCs ameliorated sciatic nerve blood flow and sciatic nerve conduction velocity as well as freshly isolated DPSCs.

Conclusions: We demonstrated the effectiveness of DPSC transplantation for diabetic polyneuropathy even when using cryopreserved DPSCs, suggesting that the transplantation of DPSCs could be a promising tool for the treatment of diabetic neuropathy.

No MeSH data available.


Related in: MedlinePlus

Intra-epidermal nerve fiber density (IENFD). a Representative photomicrographs of the histological sections of the footpads of normal and diabetic rats. Intra-epidermal nerve fibers (arrows) were detected by immunohistological staining for PGP9.5. Bar = 10μm. b Quantitative analysis for IENFD of the footpads of normal and diabetic rats. Results are expressed as means ± SEM (n = 4). *P < 0.05, **P < 0.01. DPSC dental pulp stem cell
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4562193&req=5

Fig4: Intra-epidermal nerve fiber density (IENFD). a Representative photomicrographs of the histological sections of the footpads of normal and diabetic rats. Intra-epidermal nerve fibers (arrows) were detected by immunohistological staining for PGP9.5. Bar = 10μm. b Quantitative analysis for IENFD of the footpads of normal and diabetic rats. Results are expressed as means ± SEM (n = 4). *P < 0.05, **P < 0.01. DPSC dental pulp stem cell

Mentions: To detect the sensory small nerve fiber damage in DPN, we analyzed IENFD at the footpad, which is established as a research tool for unmyelinated C and thinly myelinated A delta fibers and considered as a surrogate marker for small fiber neuropathy [23]. Intra-epidermal nerve fibers were visualized by PGP9.5 immunostaining (Fig. 4a). Quantitative analyses revealed that IENFD was significantly reduced by 50 % in the vehicle-injected side of diabetic rats compared with the normal rats (P < 0.01) (Fig. 4b), which was ameliorated by the transplantation of fresh-DPSCs (P < 0.05).Fig. 4


Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells.

Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H, Tanaka Y, Matsubara T, Naruse K - Stem Cell Res Ther (2015)

Intra-epidermal nerve fiber density (IENFD). a Representative photomicrographs of the histological sections of the footpads of normal and diabetic rats. Intra-epidermal nerve fibers (arrows) were detected by immunohistological staining for PGP9.5. Bar = 10μm. b Quantitative analysis for IENFD of the footpads of normal and diabetic rats. Results are expressed as means ± SEM (n = 4). *P < 0.05, **P < 0.01. DPSC dental pulp stem cell
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4562193&req=5

Fig4: Intra-epidermal nerve fiber density (IENFD). a Representative photomicrographs of the histological sections of the footpads of normal and diabetic rats. Intra-epidermal nerve fibers (arrows) were detected by immunohistological staining for PGP9.5. Bar = 10μm. b Quantitative analysis for IENFD of the footpads of normal and diabetic rats. Results are expressed as means ± SEM (n = 4). *P < 0.05, **P < 0.01. DPSC dental pulp stem cell
Mentions: To detect the sensory small nerve fiber damage in DPN, we analyzed IENFD at the footpad, which is established as a research tool for unmyelinated C and thinly myelinated A delta fibers and considered as a surrogate marker for small fiber neuropathy [23]. Intra-epidermal nerve fibers were visualized by PGP9.5 immunostaining (Fig. 4a). Quantitative analyses revealed that IENFD was significantly reduced by 50 % in the vehicle-injected side of diabetic rats compared with the normal rats (P < 0.01) (Fig. 4b), which was ameliorated by the transplantation of fresh-DPSCs (P < 0.05).Fig. 4

Bottom Line: Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed.Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats.Cryopreservation of DPSCs did not impair their proliferative or differential ability.

View Article: PubMed Central - PubMed

Affiliation: Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan. hata@dpc.agu.ac.jp.

ABSTRACT

Introduction: Dental pulp stem cells (DPSCs) are mesenchymal stem cells located in dental pulp and are thought to be a potential source for cell therapy since DPSCs can be easily obtained from teeth extracted for orthodontic reasons. Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed. The aim of this study is to evaluate the therapeutic potential of DPSC transplantation for diabetic polyneuropathy.

Methods: DPSCs isolated from the dental pulp of extracted incisors of Sprague-Dawley rats were partly frozen in a -80 °C freezer for 6 months. Cultured DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after streptozotocine injection and the effects of DPSC transplantation were evaluated 4 weeks after the transplantation.

Results: Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats. Cryopreservation of DPSCs did not impair their proliferative or differential ability. The transplantation of cryopreserved DPSCs ameliorated sciatic nerve blood flow and sciatic nerve conduction velocity as well as freshly isolated DPSCs.

Conclusions: We demonstrated the effectiveness of DPSC transplantation for diabetic polyneuropathy even when using cryopreserved DPSCs, suggesting that the transplantation of DPSCs could be a promising tool for the treatment of diabetic neuropathy.

No MeSH data available.


Related in: MedlinePlus