Limits...
Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells.

Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H, Tanaka Y, Matsubara T, Naruse K - Stem Cell Res Ther (2015)

Bottom Line: Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed.Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats.Cryopreservation of DPSCs did not impair their proliferative or differential ability.

View Article: PubMed Central - PubMed

Affiliation: Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan. hata@dpc.agu.ac.jp.

ABSTRACT

Introduction: Dental pulp stem cells (DPSCs) are mesenchymal stem cells located in dental pulp and are thought to be a potential source for cell therapy since DPSCs can be easily obtained from teeth extracted for orthodontic reasons. Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed. The aim of this study is to evaluate the therapeutic potential of DPSC transplantation for diabetic polyneuropathy.

Methods: DPSCs isolated from the dental pulp of extracted incisors of Sprague-Dawley rats were partly frozen in a -80 °C freezer for 6 months. Cultured DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after streptozotocine injection and the effects of DPSC transplantation were evaluated 4 weeks after the transplantation.

Results: Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats. Cryopreservation of DPSCs did not impair their proliferative or differential ability. The transplantation of cryopreserved DPSCs ameliorated sciatic nerve blood flow and sciatic nerve conduction velocity as well as freshly isolated DPSCs.

Conclusions: We demonstrated the effectiveness of DPSC transplantation for diabetic polyneuropathy even when using cryopreserved DPSCs, suggesting that the transplantation of DPSCs could be a promising tool for the treatment of diabetic neuropathy.

No MeSH data available.


Related in: MedlinePlus

Effects of dental pulp stem cell (DPSC) transplantation on sciatic motor nerve conduction velocity (MNCV), sciatic sensory nerve conduction velocity (SNCV) and sciatic nerve blood flow (SNBF). DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after STZ injection. a MNCV. b SNCV. c SNBF. Diabetic rats showed significant reductions in MNCV, SNCV and SNBF. DPSC transplantation improved them to almost the same level as those of the normal rats. Results are expressed as means ±SEM (n = 4) . *P < 0.05, **P < 0.01
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4562193&req=5

Fig2: Effects of dental pulp stem cell (DPSC) transplantation on sciatic motor nerve conduction velocity (MNCV), sciatic sensory nerve conduction velocity (SNCV) and sciatic nerve blood flow (SNBF). DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after STZ injection. a MNCV. b SNCV. c SNBF. Diabetic rats showed significant reductions in MNCV, SNCV and SNBF. DPSC transplantation improved them to almost the same level as those of the normal rats. Results are expressed as means ±SEM (n = 4) . *P < 0.05, **P < 0.01

Mentions: Eight-weeks after the STZ injection, we transplanted fresh-DPSCs into the unilateral hindlimb skeletal muscles. Neurophysiological measurements were performed at 4 weeks after DPSC transplantation. MNCV and SNCV in the vehicle-injected side of the diabetic rats were significantly reduced compared with those of the normal rats (Fig. 2a, b). DPSC transplantation significantly ameliorated both MNCV and SNCV in the DPSC-injected side compared with those in the vehicle-injected side of the diabetic rats (P < 0.01).Fig. 2


Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells.

Hata M, Omi M, Kobayashi Y, Nakamura N, Tosaki T, Miyabe M, Kojima N, Kubo K, Ozawa S, Maeda H, Tanaka Y, Matsubara T, Naruse K - Stem Cell Res Ther (2015)

Effects of dental pulp stem cell (DPSC) transplantation on sciatic motor nerve conduction velocity (MNCV), sciatic sensory nerve conduction velocity (SNCV) and sciatic nerve blood flow (SNBF). DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after STZ injection. a MNCV. b SNCV. c SNBF. Diabetic rats showed significant reductions in MNCV, SNCV and SNBF. DPSC transplantation improved them to almost the same level as those of the normal rats. Results are expressed as means ±SEM (n = 4) . *P < 0.05, **P < 0.01
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4562193&req=5

Fig2: Effects of dental pulp stem cell (DPSC) transplantation on sciatic motor nerve conduction velocity (MNCV), sciatic sensory nerve conduction velocity (SNCV) and sciatic nerve blood flow (SNBF). DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after STZ injection. a MNCV. b SNCV. c SNBF. Diabetic rats showed significant reductions in MNCV, SNCV and SNBF. DPSC transplantation improved them to almost the same level as those of the normal rats. Results are expressed as means ±SEM (n = 4) . *P < 0.05, **P < 0.01
Mentions: Eight-weeks after the STZ injection, we transplanted fresh-DPSCs into the unilateral hindlimb skeletal muscles. Neurophysiological measurements were performed at 4 weeks after DPSC transplantation. MNCV and SNCV in the vehicle-injected side of the diabetic rats were significantly reduced compared with those of the normal rats (Fig. 2a, b). DPSC transplantation significantly ameliorated both MNCV and SNCV in the DPSC-injected side compared with those in the vehicle-injected side of the diabetic rats (P < 0.01).Fig. 2

Bottom Line: Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed.Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats.Cryopreservation of DPSCs did not impair their proliferative or differential ability.

View Article: PubMed Central - PubMed

Affiliation: Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan. hata@dpc.agu.ac.jp.

ABSTRACT

Introduction: Dental pulp stem cells (DPSCs) are mesenchymal stem cells located in dental pulp and are thought to be a potential source for cell therapy since DPSCs can be easily obtained from teeth extracted for orthodontic reasons. Obtained DPSCs can be cryopreserved until necessary and thawed and expanded when needed. The aim of this study is to evaluate the therapeutic potential of DPSC transplantation for diabetic polyneuropathy.

Methods: DPSCs isolated from the dental pulp of extracted incisors of Sprague-Dawley rats were partly frozen in a -80 °C freezer for 6 months. Cultured DPSCs were transplanted into the unilateral hindlimb skeletal muscles 8 weeks after streptozotocine injection and the effects of DPSC transplantation were evaluated 4 weeks after the transplantation.

Results: Transplantation of DPSCs significantly improved the impaired sciatic nerve blood flow, sciatic motor/sensory nerve conduction velocity, capillary number to muscle fiber ratio and intra-epidermal nerve fiber density in the transplanted side of diabetic rats. Cryopreservation of DPSCs did not impair their proliferative or differential ability. The transplantation of cryopreserved DPSCs ameliorated sciatic nerve blood flow and sciatic nerve conduction velocity as well as freshly isolated DPSCs.

Conclusions: We demonstrated the effectiveness of DPSC transplantation for diabetic polyneuropathy even when using cryopreserved DPSCs, suggesting that the transplantation of DPSCs could be a promising tool for the treatment of diabetic neuropathy.

No MeSH data available.


Related in: MedlinePlus