Limits...
Application of "Systems Vaccinology" to Evaluate Inflammation and Reactogenicity of Adjuvanted Preventative Vaccines.

Lewis DJ, Lythgoe MP - J Immunol Res (2015)

Bottom Line: Advances in "omics" technology (transcriptomics, proteomics, metabolomics, genomics/epigenomics, etc.) allied with statistical and bioinformatics tools are providing insights into basic mechanisms of vaccine and adjuvant efficacy or inflammation/reactogenicity.The identification of rare events (such as those observed with initial rotavirus vaccine or suspected autoimmune complications) will require interrogation of large data sets and population-based research before application of systems vaccinology.The Innovative Medicine Initiative funded public-private project BIOVACSAFE is an initial attempt to systematically identify biomarkers of relatively common inflammatory events after adjuvanted immunization using human, animal, and population-based models.

View Article: PubMed Central - PubMed

Affiliation: Clinical Research Centre, University of Surrey, Guildford GU2 7AX, UK.

ABSTRACT
Advances in "omics" technology (transcriptomics, proteomics, metabolomics, genomics/epigenomics, etc.) allied with statistical and bioinformatics tools are providing insights into basic mechanisms of vaccine and adjuvant efficacy or inflammation/reactogenicity. Predictive biomarkers of relatively frequent inflammatory reactogenicity may be identified in systems vaccinology studies involving tens or hundreds of participants and used to screen new vaccines and adjuvants in in vitro, ex vivo, animal, or human models. The identification of rare events (such as those observed with initial rotavirus vaccine or suspected autoimmune complications) will require interrogation of large data sets and population-based research before application of systems vaccinology. The Innovative Medicine Initiative funded public-private project BIOVACSAFE is an initial attempt to systematically identify biomarkers of relatively common inflammatory events after adjuvanted immunization using human, animal, and population-based models. Discriminatory profiles or biomarkers are being identified, which require validation in large trials involving thousands of participants before they can be generalized. Ultimately, it is to be hoped that the knowledge gained from such initiatives will provide tools to the industry, academia, and regulators to select optimal noninflammatory but immunogenic and effective vaccine adjuvant combinations, thereby shortening product development cycles and identifying unsuitable vaccine candidates that would fail in expensive late stage development or postmarketing.

No MeSH data available.


Related in: MedlinePlus

Integrated database for systems vaccinology.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4562180&req=5

fig7: Integrated database for systems vaccinology.

Mentions: Effective application of systems vaccinology requires the retrieval and integration of data from many different sites and assays, including preclinical and clinical data as well as complex laboratory and systems biology (or “omics”) data (Figure 7). BIOVACSAFE has developed a bespoke annotated large data warehouse using the open access tranSMART platform, including the provision of database hosting and curation as well as data mining capabilities. The use of the tranSMART platform allows the collection of data in a format that will be compatible with other international projects and consortia. Clinical data will meet CDISC-CDASH, CDISC-SDTM, and BRIDG UML standards to ensure seamless comparisons between trial protocols within BIOVACSAFE and externally or in the future. The shared database will enable partners to conduct exploration and analysis using a systems biology approach leading to biological interpretation, while preserving high standards of data protection and confidentiality. Data inventory requirements will be served by a standards compliant data repository that will store project data and metadata according to the list above. Once cleaned and curated, data will be accessed via a warehouse based on tranSMART for data mining and analytical processes. Data will then be accessible for export to specific systems biology and statistical tools for the analysis and correlation, after selection within the database on specific criteria. Statistical Analysis Plans will ensure that appropriate biological questions are framed in advance. This unique combination of adverse reactions, safety laboratory variables, and “omics” data from human and animal models will be an invaluable resource.


Application of "Systems Vaccinology" to Evaluate Inflammation and Reactogenicity of Adjuvanted Preventative Vaccines.

Lewis DJ, Lythgoe MP - J Immunol Res (2015)

Integrated database for systems vaccinology.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4562180&req=5

fig7: Integrated database for systems vaccinology.
Mentions: Effective application of systems vaccinology requires the retrieval and integration of data from many different sites and assays, including preclinical and clinical data as well as complex laboratory and systems biology (or “omics”) data (Figure 7). BIOVACSAFE has developed a bespoke annotated large data warehouse using the open access tranSMART platform, including the provision of database hosting and curation as well as data mining capabilities. The use of the tranSMART platform allows the collection of data in a format that will be compatible with other international projects and consortia. Clinical data will meet CDISC-CDASH, CDISC-SDTM, and BRIDG UML standards to ensure seamless comparisons between trial protocols within BIOVACSAFE and externally or in the future. The shared database will enable partners to conduct exploration and analysis using a systems biology approach leading to biological interpretation, while preserving high standards of data protection and confidentiality. Data inventory requirements will be served by a standards compliant data repository that will store project data and metadata according to the list above. Once cleaned and curated, data will be accessed via a warehouse based on tranSMART for data mining and analytical processes. Data will then be accessible for export to specific systems biology and statistical tools for the analysis and correlation, after selection within the database on specific criteria. Statistical Analysis Plans will ensure that appropriate biological questions are framed in advance. This unique combination of adverse reactions, safety laboratory variables, and “omics” data from human and animal models will be an invaluable resource.

Bottom Line: Advances in "omics" technology (transcriptomics, proteomics, metabolomics, genomics/epigenomics, etc.) allied with statistical and bioinformatics tools are providing insights into basic mechanisms of vaccine and adjuvant efficacy or inflammation/reactogenicity.The identification of rare events (such as those observed with initial rotavirus vaccine or suspected autoimmune complications) will require interrogation of large data sets and population-based research before application of systems vaccinology.The Innovative Medicine Initiative funded public-private project BIOVACSAFE is an initial attempt to systematically identify biomarkers of relatively common inflammatory events after adjuvanted immunization using human, animal, and population-based models.

View Article: PubMed Central - PubMed

Affiliation: Clinical Research Centre, University of Surrey, Guildford GU2 7AX, UK.

ABSTRACT
Advances in "omics" technology (transcriptomics, proteomics, metabolomics, genomics/epigenomics, etc.) allied with statistical and bioinformatics tools are providing insights into basic mechanisms of vaccine and adjuvant efficacy or inflammation/reactogenicity. Predictive biomarkers of relatively frequent inflammatory reactogenicity may be identified in systems vaccinology studies involving tens or hundreds of participants and used to screen new vaccines and adjuvants in in vitro, ex vivo, animal, or human models. The identification of rare events (such as those observed with initial rotavirus vaccine or suspected autoimmune complications) will require interrogation of large data sets and population-based research before application of systems vaccinology. The Innovative Medicine Initiative funded public-private project BIOVACSAFE is an initial attempt to systematically identify biomarkers of relatively common inflammatory events after adjuvanted immunization using human, animal, and population-based models. Discriminatory profiles or biomarkers are being identified, which require validation in large trials involving thousands of participants before they can be generalized. Ultimately, it is to be hoped that the knowledge gained from such initiatives will provide tools to the industry, academia, and regulators to select optimal noninflammatory but immunogenic and effective vaccine adjuvant combinations, thereby shortening product development cycles and identifying unsuitable vaccine candidates that would fail in expensive late stage development or postmarketing.

No MeSH data available.


Related in: MedlinePlus