Limits...
A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.

Pratesi A, Cecchi F, Beani E, Sgandurra G, Cioni G, Laschi C, Dario P - Biomed Eng Online (2015)

Bottom Line: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°.The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

View Article: PubMed Central - PubMed

Affiliation: The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy. a.pratesi@sssup.it.

ABSTRACT

Background: The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics.

Methods: The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random.

Results: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.

Conclusions: The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

No MeSH data available.


Examples of attention task: a results of SmartEye analysis of intersection between the gaze with the screens. During the transition from screen #3 to #4, the gaze passes through the space between the two screens thus it does not intersect one of the AOI and the system returns zero value, b gaze heading during the transition from screen #3 to screen #4, c head heading during the transition from screen #3 to screen #4, d results of SmartEye analysis of intersection between the gaze with the peripheral screens. In this case the system returns zero value when the gaze is between screen 3 and 4 and between 4 and 5, e gaze heading during the transition from screen #3 to screen #5, f head heading during the transition from screen #3 to screen #5
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4562110&req=5

Fig7: Examples of attention task: a results of SmartEye analysis of intersection between the gaze with the screens. During the transition from screen #3 to #4, the gaze passes through the space between the two screens thus it does not intersect one of the AOI and the system returns zero value, b gaze heading during the transition from screen #3 to screen #4, c head heading during the transition from screen #3 to screen #4, d results of SmartEye analysis of intersection between the gaze with the peripheral screens. In this case the system returns zero value when the gaze is between screen 3 and 4 and between 4 and 5, e gaze heading during the transition from screen #3 to screen #5, f head heading during the transition from screen #3 to screen #5

Mentions: Figure 7 shows a typical attention task in which an infant orients his/her attention to the periphery (left: from screen 3 to 4, i.e. 30°, right: from screen 3 to 5, i.e. 60°). More specifically, it shows how transition of the gaze from the central screen (#3) to the peripheral one (#4 or #5) works and data about gaze and head position return information about the contribution of head and eye during the required movement.Fig. 7


A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.

Pratesi A, Cecchi F, Beani E, Sgandurra G, Cioni G, Laschi C, Dario P - Biomed Eng Online (2015)

Examples of attention task: a results of SmartEye analysis of intersection between the gaze with the screens. During the transition from screen #3 to #4, the gaze passes through the space between the two screens thus it does not intersect one of the AOI and the system returns zero value, b gaze heading during the transition from screen #3 to screen #4, c head heading during the transition from screen #3 to screen #4, d results of SmartEye analysis of intersection between the gaze with the peripheral screens. In this case the system returns zero value when the gaze is between screen 3 and 4 and between 4 and 5, e gaze heading during the transition from screen #3 to screen #5, f head heading during the transition from screen #3 to screen #5
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4562110&req=5

Fig7: Examples of attention task: a results of SmartEye analysis of intersection between the gaze with the screens. During the transition from screen #3 to #4, the gaze passes through the space between the two screens thus it does not intersect one of the AOI and the system returns zero value, b gaze heading during the transition from screen #3 to screen #4, c head heading during the transition from screen #3 to screen #4, d results of SmartEye analysis of intersection between the gaze with the peripheral screens. In this case the system returns zero value when the gaze is between screen 3 and 4 and between 4 and 5, e gaze heading during the transition from screen #3 to screen #5, f head heading during the transition from screen #3 to screen #5
Mentions: Figure 7 shows a typical attention task in which an infant orients his/her attention to the periphery (left: from screen 3 to 4, i.e. 30°, right: from screen 3 to 5, i.e. 60°). More specifically, it shows how transition of the gaze from the central screen (#3) to the peripheral one (#4 or #5) works and data about gaze and head position return information about the contribution of head and eye during the required movement.Fig. 7

Bottom Line: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°.The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

View Article: PubMed Central - PubMed

Affiliation: The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy. a.pratesi@sssup.it.

ABSTRACT

Background: The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics.

Methods: The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random.

Results: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.

Conclusions: The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

No MeSH data available.