Limits...
A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.

Pratesi A, Cecchi F, Beani E, Sgandurra G, Cioni G, Laschi C, Dario P - Biomed Eng Online (2015)

Bottom Line: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°.The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

View Article: PubMed Central - PubMed

Affiliation: The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy. a.pratesi@sssup.it.

ABSTRACT

Background: The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics.

Methods: The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random.

Results: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.

Conclusions: The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

No MeSH data available.


Related in: MedlinePlus

Schematic system overview. The mechanical custom structure represents the support for the five screens, the five speakers, the six SmartEye cameras running at 60 Hz and two IR-diodes used for illuminating the face of the subject in order to minimize the effect of varying environmental lighting conditions and for using the reflections of these IR flashes on the cornea (“glints”) to find the centre of the eyes. The stimuli management has been obtained using a laptop combined with the audio–video external devices. In the lower part of this overview, it is possible to observe the gaze heading frame of reference
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4562110&req=5

Fig1: Schematic system overview. The mechanical custom structure represents the support for the five screens, the five speakers, the six SmartEye cameras running at 60 Hz and two IR-diodes used for illuminating the face of the subject in order to minimize the effect of varying environmental lighting conditions and for using the reflections of these IR flashes on the cornea (“glints”) to find the centre of the eyes. The stimuli management has been obtained using a laptop combined with the audio–video external devices. In the lower part of this overview, it is possible to observe the gaze heading frame of reference

Mentions: The system consists of an eye-tracker integrated into a customised mechanical structure. The five points are placed in specific positions: one in the centre, two on the right side (30° and 60°) and two on the left side (30° and 60°). In order to provide audio-visual stimulations, each point of interest comprises a screen (10.5″) and a speaker. A mechanical structure has been designed in order to fix the screens and the speakers at specific distances and angles (Fig. 1). The screens active area represents our area of interest (AOI), so our stimuli dimensions are 220 × 129 mm.Fig. 1


A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.

Pratesi A, Cecchi F, Beani E, Sgandurra G, Cioni G, Laschi C, Dario P - Biomed Eng Online (2015)

Schematic system overview. The mechanical custom structure represents the support for the five screens, the five speakers, the six SmartEye cameras running at 60 Hz and two IR-diodes used for illuminating the face of the subject in order to minimize the effect of varying environmental lighting conditions and for using the reflections of these IR flashes on the cornea (“glints”) to find the centre of the eyes. The stimuli management has been obtained using a laptop combined with the audio–video external devices. In the lower part of this overview, it is possible to observe the gaze heading frame of reference
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4562110&req=5

Fig1: Schematic system overview. The mechanical custom structure represents the support for the five screens, the five speakers, the six SmartEye cameras running at 60 Hz and two IR-diodes used for illuminating the face of the subject in order to minimize the effect of varying environmental lighting conditions and for using the reflections of these IR flashes on the cornea (“glints”) to find the centre of the eyes. The stimuli management has been obtained using a laptop combined with the audio–video external devices. In the lower part of this overview, it is possible to observe the gaze heading frame of reference
Mentions: The system consists of an eye-tracker integrated into a customised mechanical structure. The five points are placed in specific positions: one in the centre, two on the right side (30° and 60°) and two on the left side (30° and 60°). In order to provide audio-visual stimulations, each point of interest comprises a screen (10.5″) and a speaker. A mechanical structure has been designed in order to fix the screens and the speakers at specific distances and angles (Fig. 1). The screens active area represents our area of interest (AOI), so our stimuli dimensions are 220 × 129 mm.Fig. 1

Bottom Line: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°.The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

View Article: PubMed Central - PubMed

Affiliation: The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy. a.pratesi@sssup.it.

ABSTRACT

Background: The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics.

Methods: The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random.

Results: We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way.

Conclusions: The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

No MeSH data available.


Related in: MedlinePlus